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Scholars who view organizational, social, and technological systems as sets of interdependent decisions haveincreasingly used simulation models from the biological and physical sciences to examine system behavior.
These models shed light on an enduring managerial question: How much exploration is necessary to discover
a good configuration of decisions? The models suggest that, as interactions across decisions intensify and local
optima proliferate, broader exploration is required. The models typically assume, however, that the interactions
among decisions are distributed randomly. Contrary to this assumption, recent empirical studies of real organi-
zational, social, and technological systems show that interactions among decisions are highly patterned. Patterns
such as centralization, small-world connections, power-law distributions, hierarchy, and preferential attachment
are common. We embed such patterns into an NK simulation model and obtain dramatic results: Holding fixed
the total number of interactions among decisions, a shift in the pattern of interaction can alter the number of local optima
by more than an order of magnitude. Thus, the long-run value of broader exploration is significantly greater in the
face of some interaction patterns than in the face of others. We develop simple, intuitive rules of thumb that
allow a decision maker to examine two interaction patterns and determine which warrants greater investment
in broad exploration. We also find that, holding fixed the interaction pattern, an increase in the number of
interactions raises the number of local optima regardless of the pattern. This validates prior comparative static
results with respect to the number of interactions, but highlights an important implicit assumption in earlier
work—that the underlying interaction pattern remains constant as interactions become more numerous.
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1. Introduction
How much should an organization invest in the
broad exploration of new possibilities? This endur-
ing question arises in a wide array of contexts,
including the management of production processes
(Abernathy 1978), the search for new technologies
(Wheelwright and Clark 1992, Fleming 2001), the
structuring of organizations (Tushman and O’Reilly
1996), the design of products (Ulrich and Eppinger
2007, Baldwin and Clark 2000), and the design of indi-
vidual and organizational learning processes (Ashby
1960, Argyris and Schön 1978, March 1991). The ques-
tion poses a managerial dilemma. On one hand, man-
agers of an organization must embrace the exploration
of new possibilities. Otherwise, the organization fails
to innovate. On the other hand, managers must con-
tain exploration because it competes for resources with
another crucial organizational process, the exploita-
tion of known opportunities (March 1991). It is widely
acknowledged that effective organizations strike a

healthy balance between exploration and exploita-
tion, even though it is organizationally difficult to
accomplish both (Ghemawat and Ricart i Costa 1993,
Tushman and O’Reilly 1996, Benner and Tushman
2003). How, however, can one know whether a par-
ticular balance is healthy? Under which conditions is
it essential to rein in exploration, and when must one
unleash it?
Studies of complex adaptive systems, set initially

in the physical and biological sciences, have begun
to shed light on this issue. Many of these studies
seek systems that relax the exploration/exploitation
trade-off—systems that are responsive and creative,
yet stable and orderly, neither frozen nor chaotic
(e.g., Langton 1990, Kauffman 1993). Among the
complex adaptive systems frameworks that have
made the transition to management science, the NK
model from theoretical biology (Kauffman and Levin
1987, Kauffman and Weinberger 1989, Kauffman
1993) has become a particularly popular platform for
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studying organizations as complex adaptive systems
(e.g., Levinthal 1997, McKelvey 1999, Gavetti and
Levinthal 2000, Rivkin 2000, Sorenson 2002, Ethiraj
and Levinthal 2004). The model grants a researcher
control over the interactions among the elements that
make up a system. Results of the model have shed
light on the question of optimal exploration: As the
degree of interaction among a firm’s choices rises,
the poor local optima that can disrupt a firm’s search
efforts proliferate and it becomes preferable, ceteris
paribus, for a firm to undertake more exploration
in order to escape those optima (Kauffman 1993,
Levinthal 1997, Rivkin and Siggelkow 2003). Decision-
making processes that focus on incremental change
run out of improvement possibilities quickly when
choices are intertwined, so broader search becomes
vital.
By embedding recent empirical results in a simula-

tion model, this paper takes the NK model’s insights
on optimal exploration an important step further. Past
modeling efforts have looked exclusively at how the
degree of interaction among a firm’s choices affects
appropriate exploration. Much less attention has been
placed on the pattern of interaction among these
choices. Indeed, in most NK analyses it is assumed
that interactions among choices have a random pat-
tern. This made sense in the biological context, where
the interactions were among genes and it was “use-
ful to confess our total ignorance and admit that, for
different genes and those which epistatically affect
them, essentially arbitrary interactions are possible”
(Kauffman 1993, p. 41). In the context of organiza-
tional, social, and technological systems, however,
recent empirical work has shown that interactions are
often very patterned. Our paper exploits this newly
gained knowledge in three ways. First, we exam-
ine how commonly observed patterns of interactions
affect the proliferation of local optima and, accord-
ingly, the appropriate amount of long-run exploration.
We find that systems of choices with the same num-
ber of total interactions but different patterns of inter-
actions can display very different numbers of local
peaks. Second, we study the relationship between
the number of interactions and the number of local
peaks, holding the pattern of interaction constant.
This analysis sheds light on the question of whether
prior comparative static results with respect to K,
derived from random interaction patterns, are likely
to hold for other patterns as well. Third, we iden-
tify easily observable characteristics of interaction pat-
terns beyond the overall degree of interaction that
in many cases allow one to look at two patterns of
interaction and tell immediately which one generates
more local optima and warrants greater investment in
broad exploration. This can enable managers to con-
vert their knowledge of the interactions among the

choices they face into concrete guidance for optimal
exploration.
For insight into real patterns of interactions, we

rely on empirical work conducted in diverse domains.
Detailed work at the level of individual firms (e.g.,
Porter 1996, Siggelkow 2002), and at the level of indi-
vidual product systems (e.g., Eppinger et al. 1994,
Ulrich and Eppinger 2007, Baldwin and Clark 2000),
has yielded a number of explicit maps that show
the interdependencies among the various system ele-
ments, allowing us to start seeing patterns. Likewise,
recent network analyses, such as work on small-world
networks (Watts and Strogatz 1998), has generated
a great deal of research describing the patterns of
real-world networks of interactions. As most of these
studies show, networks tend not to be random, but
are highly patterned.1 Specifically, recent empirical
work led us to study 10 different interaction pat-
terns: a small-world interaction structure (Watts and
Strogatz 1998), which includes as extreme cases the
random structure and the local structure; the preferential
attachment and the scale-free structures, two structures
currently under intense investigation (e.g., Barabási
2002); and the centralized, hierarchical, block-diagonal,
diagonal, and dependent structures, which capture var-
ious patterns observed in product design and studies
of firms.
We emphasize the implications of interaction pat-

terns for optimal exploration. Prior research has
shown that interaction patterns affect other organiza-
tional phenomena as well, including the ability of a
firm to adapt to environmental change, to imitate the
effective configurations of other firms, and to repli-
cate one’s own effective configurations (e.g., Levinthal
1997; Rivkin 2000, 2001). We speculate below on how
interaction patterns may influence these phenomena.
Moreover, firms might be able to affect interaction
patterns through system design decisions (Levinthal
and Warglien 1999, MacCormack et al. 2006). Our
findings suggest how firms might design systems to
be more readily searchable.
This paper is structured as follows: Section 2 de-

scribes in detail the 10 interaction patterns we ana-
lyze. Section 3 outlines how we create decision
problems with these different underlying interac-
tion patterns. The results in §4 characterize the local

1 It is interesting to note that, similar to the NK framework, net-
work and graph theory, building on the seminal work by Erdős
and Rényi (1959), traditionally relied on a randomness assumption
as well. As Barabási (2002, p. 23) points out, “The random net-
work theory of Erdős and Rényi has dominated scientific thinking
about networks since its introduction in 1959. It created several
paradigms that are consciously or unconsciously imprinted on the
minds of everyone who deals with networks. It equated complexity
with randomness. If a network was too complex to be captured in
simple terms, it urged us to describe it as random.”
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optima that arise from the various interaction pat-
terns. Section 5 explains in an intuitive way the link
between different interaction patterns and the num-
ber of local optima they create. The different numbers
of local optima, in turn, affect the benefit of broad
organizational exploration, as §6 shows. Section 7 con-
cludes.

2. Types of Influence Matrices
While the model we study is general enough to
encompass a wide range of organizational, social,
and technological systems, for expositional purposes
we focus on firms as our system of interest. A long
tradition in the organization literature (e.g., Learned
et al. 1961), reinforced recently by empirical, prescrip-
tive, and computational studies (e.g., Siggelkow 2002,
Porter 1996, Levinthal 1997), leads us to conceptual-
ize a firm’s management team as facing a number
of interdependent decisions. Each firm must choose,
for instance, whether to distribute broadly or through
narrow channels, whether to advertise in mass media,
whether to invest in large-scale production facilities,
etc. These decisions might interact with each other.
For instance, broad distribution might make mass-
market advertising more attractive.
In the context of modeling search behavior of firms,

the NK framework assumes that a firm faces N deci-
sions, each of which can be configured in a number
of different ways (two, in our simulations). The con-
tribution of an individual decision to a firm’s over-
all performance depends on the resolution of that
decision, and possibly other decisions. It is common
to think of the space of decisions and the payoffs
from combinations of choices as defining a “perfor-
mance landscape:” each of the N decisions corre-
sponds to a “horizontal” dimension, while the payoff
is represented on the “vertical” axis.
An influence matrix records which decisions affect

each decision. If a firm makes N decisions, then an
influence matrix is an N ∗N matrix whose entry �i� j�
is set to an x if the resolution of column decision j
affects the value of row decision i. Because each deci-
sion affects itself, all influence matrices have xs along
their diagonal. Influence matrices can differ, however,
in the total number of off-diagonal xs, i.e., in the num-
ber of interactions among the decisions, and in the
patterns of these interactions. In the original NK setup
(Kauffman 1993), it was assumed that each decision
is affected by exactly K other decisions, i.e., each row
contained K off-diagonal xs. Thus, in total, an NK
influence matrix contained N ∗ �K + 1� interactions.
While a number of studies have investigated various
consequences that arise when K increases in a random
influence matrix (e.g., Kauffman 1993), we are inter-
ested in the effect of different patterns of interactions

holding K fixed. Hence, to allow for comparisons of
different types of interaction structures, we keep the
total number of interactions fixed at N ∗ �K + 1�, but
alter the pattern of interactions among the decisions.
Even for relatively small values of N and K, many

possible interaction structures exist. In particular, N ∗
K (off-diagonal) interactions can be placed in N 2−N
locations (the N diagonal elements are always filled),
creating

�N 2−N�!
�N ∗K�!�N 2−N −N ∗K�!

possibilities. For N = 12 and K = 2, for instance, this
yields 1	36 ∗ 1026 possible influence matrices. For all
our analyses, the labeling of individual decisions does
not matter (i.e., columns and corresponding rows can
be rearranged).2 This reduces the number of patterns
by a factor as large as N !, the number of ways that N
decisions can be reordered. For N = 12 and K = 2, this
reduction still leaves a lower bound of 2	84 ∗ 1017 dif-
ferent patterns. Given this vast space of possibilities,
it is helpful to consider different types of interaction
patterns. In particular, we focus on 10 types that were
culled from current work on networks, from studies
that depict firms as deploying systems of interdepen-
dent activities, and from product design analyses.
Influence matrices arise frequently in these contexts

even though the term “influence matrix” might not
have been used there. The representation of a network
as an influence matrix is straightforward (Wasserman
and Faust 1994). Each row corresponds to a node
of a network, as does each column, with an entry
in row i, column j denoting that node j has a link
to (and affects) node i. The work on firms as sys-
tems of interdependent activities generally has repre-
sented firms as consisting of a network of activities
that are linked by interactions among them (Porter
1996, Siggelkow 2002). Again, these networks can
easily be transformed into influence matrices. Most
directly, the product design literature has developed
the tool of a “design structure matrix” (DSM) (Stew-
ard 1981, Eppinger et al. 1994, Baldwin and Clark
2000), which corresponds to an influence matrix by
our definition. A DSM contains all design decisions
(e.g., concerning particular design parameters) that
have to be resolved. The DSM has an entry in row
i, column j if the design choice of element j has
an impact on the optimal design choice of element
i. For instance, the choice of engine power (element
j) might have an impact on the optimal design of
the brake system (element i). Table 1 examines all
activity system maps that have been published in

2 For the analysis it would not matter, for instance, whether we label
the decision concerning training of the sales force as decision 1 or
as decision 2. As long as we keep track of which decisions interact
with one another, the labels of the decisions can be interchanged.
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Table 1 Characteristics of Actual Design Structure Matrices and
Activity Systems

Example N K†

Design structure matrices
Automobile brake system (Black et al.1990) 13 3�8
Kodak cartridge development process (Ulrich 14 2�5

and Eppinger 2007)
Automobile climate control system (Pimmler 16 1�4

and Eppinger 1994)
Automobile door (Dong 1999) 32 3�4
Automobile digital mock-up process for 50 3�5

the layout for components in the engine
compartment (Ulrich and Eppinger 2007)

Semiconductor development process (Osborne 1993) 60 6�5
Power plant design 72 6�8
Jet engine design (Mascoli 1999) 111 5�8

Activity systems
Vanguard–1974 (Siggelkow 2002) 18 2�2
Vanguard–1977 (Siggelkow 2002) 24 2�8
Vanguard–1978 (Siggelkow 2002) 29 2�8
Vanguard–1991 (Siggelkow 2002) 41 2�9
Vanguard–1997 (Siggelkow 2002) 48 3�0
Liz Claiborne–1990 (Siggelkow 2001) 36 3�2
Liz Claiborne–1997 (Siggelkow 2001) 34 3�5
IKEA–1996 (Porter 1996) 20 3�4
Southwest Airlines–1996 (Porter 1996) 18 3�4
Vanguard–1996 (Porter 1996) 25 3�4

†The value of K is computed by dividing the number of off-diagonal inter-
action effects by N .

the literature (Porter 1996; Siggelkow 2001, 2002) and
all DSMs that were published on the DSM home
page (www.dsmweb.org), which is hosted by Steven
Eppinger, Daniel Whitney, and Ali Yassine. For the
firm activity systems, N ranges from 18 to 48, and K,
calculated as the number of off-diagonal interaction
effects divided by N , from 2.2 to 3.5. For the DSMs, N
varies from 13 to 111, with K ranging from 1.4 to 6.8.
The 10 different types of influence matrices we

explore can be divided into two groups. For five
types, each decision is affected by exactly K other
decisions. That is, each row of the influence matrix
contains exactly K off-diagonal entries. The other five
types allow for more heterogeneity among the deci-
sions. For instance, some decisions are allowed to be
affected by many other decisions, while other deci-
sions might depend only on themselves.

Random. In a random influence matrix, exactly K
xs are placed at randomly chosen off-diagonal posi-
tions in each row. For one example with N = 12
and K = 2, see Figure 1A. This specification is one
of the two original specifications of the NK model
(Kauffman 1993) and is the setup most commonly
used in the organization literature (e.g., Westhoff et al.
1996, Rivkin 2000).

Local. In a local influence matrix, the other orig-
inal specification, each decision i is assumed to be
influenced by its K/2 neighbors on either side of it

(Figure 1B). For instance, if K = 2, decision 3 is
affected by decisions 2 and 4. Decisions are assumed
to lie on a “ring,” i.e., if K = 2, decision 1 is affected
by decision 2 and decision N . This influence structure
is related to Thompson’s (1967) notion of “sequential
interdependence” and has been employed previously
in the organization literature (Levinthal 1997, Gavetti
and Levinthal 2000). Moreover, it forms the starting
point of the small-world influence structure.

Small world. Although not new, the notion of
small-world networks (Milgram 1967) has attracted
renewed attention due to recent theoretical advances
(Watts and Strogatz 1998). A core feature of small-
world networks is that most interactions are local,
yet a few interactions exist between elements of the
system that are distant from each other. Small-world
interaction patterns have been documented in a vari-
ety of settings, including ownership patterns among
German firms (Kogut and Walker 2001), board of
directors’ interlocks (Davis et al. 2003), memberships
in underwriting syndicates (Baum et al. 2003), firm-
alliance networks (Schilling and Phelps 2004), career
networks of artists (Uzzi and Spiro 2005, Guimera
et al. 2005), and collaboration networks of scientists
(Newman 2001).
Following the algorithm by Watts and Strogatz

(1998), we create small-world influence matrices in
two steps. First, a matrix is initialized with a local
influence structure. Second, each off-diagonal x is ex-
changed with a randomly chosen location in the same
row with probability p. For one example, see Fig-
ure 1C. One should note that p = 0 yields an influ-
ence matrix with a local structure, while p= 1 creates
a random influence structure, as every off-diagonal
interaction in the matrix is randomly “rewired.”

Block-diagonal. Interactions can be local in a differ-
ent sense as well. In some systems, decisions can be
grouped such that decisions within each group all
affect each other, while no interactions across groups
exist. This structure relates to the notion of decompos-
ability (Simon 1962) and is the key characteristic of
modularity (Eisenhardt and Brown 1999, Baldwin and
Clark 2000, Schilling 2000). Block-diagonal structures
have been used in a number of NK models (Marengo
et al. 2000, Rivkin and Siggelkow 2003, Siggelkow and
Levinthal 2003), yet their characteristics have not been
compared to other structures. For an example of a
symmetric block-diagonal influence matrix, see Fig-
ure 1D.

Preferential attachment. In all influence matrices dis-
cussed up to this point, each decision is affected
by precisely K other decisions, while each decision
itself affects K other decisions, on average. In some
systems, however, certain decisions exist that are
more central than others in the sense that they affect
a larger number of other decisions than do most



Rivkin and Siggelkow: Patterned Interactions in Complex Systems: Implications for Exploration
1072 Management Science 53(7), pp. 1068–1085, © 2007 INFORMS

Figure 1 Different Types of Influence Matrices, All with the Same Number of Total Interactions �N = 12� K = 2� N ∗ �K + 1�= 36�
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choices. For instance, in the analysis of the mutual
fund company Vanguard, Siggelkow (2002) reports
that certain of Vanguard’s choices were much more
central than other choices. Similarly, DSMs often show
that certain design elements are much more central.
For example, Figure 2 displays the DSM of an auto-
mobile brake system as reported by Black et al. (1990).
In this DSM, element 4 (corresponding to “piston
front size”) affects seven out of the other 12 elements
of the system, while element 11 (“booster—maximum
stroke”) influences only itself. Such imbalance in the
influence exerted by various elements is sometimes
reflected in a distinction between core and peripheral
elements (e.g., Hannan and Freeman 1984).
One method of creating networks with elements

that are more central than others has been provided
by Barabási and Albert (1999). Their algorithm cap-
tures a “rich-get-richer” dynamic, by which nodes
that already have many interactions are more likely
to add a further interaction than are nodes that have
few interactions. Thus, interactions are preferentially

attached to nodes that already affect many other
nodes. We create preferential attachment influence
matrices in four steps. First, we initialize a matrix
with xs along the main diagonal. Second, we pick one
row randomly with equal probability. Call this row i.
Third, we pick one column randomly with a proba-
bility that is proportional to the number of xs that are
already in that column. In particular, if Dj is the num-
ber of xs in column j and S is the total number of xs
in the matrix at the current point, then the probability
that column j is picked is Dj/S. Fourth, if column j
was picked, we replace the entry in row i, column j
with an x (if there is already an x in �i� j�, the x is
not changed) and S is updated. We repeat Steps 2–4
until S = N ∗ �K + 1�. For one resulting example, see
Figure 1E.

Scale-free. A different implementation of the notion
that some elements are more central than others
assumes that the degree distribution of nodes fol-
lows a power law. (Here, the degree of a node equals
the number of other nodes it affects.) Networks with
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Figure 2 Design Structure Matrix of an Automobile Brake System
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Source. Black et al. (1990) as in http://www.dsmweb.org/index.php?option=
com_content&task=view&id=52.

power-law degree distributions are called scale-free
(Barabási and Albert 1999). A number of networks
have been shown to be scale-free (Albert et al. 1999,
Strogatz 2001, Albert and Barabási 2002).3 In the con-
text of firm activity systems, the degree distribution
in the influence matrix that Siggelkow (2002) reports
for the mutual fund provider Vanguard also closely
follows a power law.
We create a scale-free influence matrix in two

steps. First, we initialize the matrix with xs along
the main diagonal. Second, in each column, M
off-diagonal xs are added, where M lies between
0 and N − 1, such that Prob�M� = �M + 1�−� .
Thus, plotting the number of decisions (M) that
a given decision affects against the probability of
this occurrence yields a straight line on a log-log
scale: (ln(Prob�M�� = −� ∗ ln�M + 1��. The parame-
ter � is chosen such that on average the total num-
ber of xs in each influence matrix equals N ∗ �K + 1�.
For instance, for N = 12, setting � to 1.37 produces the
same total number of interactions on average as a ran-
dom influence matrix with K = 2. For an example of a
resulting influence matrix, see Figure 1F.4

Centralized. The centralized influence matrix takes
the notion of highly influential decisions to the
extreme. It assumes that some decisions affect all
other decisions, while other decisions only affect

3 The previously described preferential attachment algorithm can
yield a power-law distribution if the matrix is allowed to grow, i.e.,
if nodes are added to the system every time the algorithm cycles
through Steps 2–4 (Barabási and Albert 1999). Given the fixed value
of N and differing values of K, this approach is not suitable here.
As a result, we create a power-law distribution directly.
4 Despite their difference with respect to containing asymmetri-
cally influential elements, scale-free networks share a number of
properties with small-world networks. For instance, their cluster-
ing coefficients are much larger than that of random networks of
the same size and average degree.

themselves. See, e.g., Barabási (2002, p. 103) for a
mechanism that can lead to a “winner-take-all” inter-
action structure, and Ghemawat and Levinthal (2000)
for an application of this influence matrix to organi-
zational search. Starting with xs along the main diag-
onal, this matrix is created by adding xs into the first
column, then into the second column, etc., until the
matrix contains a total of N ∗ �K+ 1� interactions. See
Figure 1G.

Hierarchical. The hierarchical influence matrix as-
sumes that decisions are ordered in some fashion,
with high-ranked decisions influencing all the deci-
sions below them, but not the decisions above them
(Ghemawat and Levinthal 2000). Starting with xs
along the main diagonal, we create a hierarchical
influence matrix by adding xs below the diagonal,
starting with the first column, continuing with the
second column, etc., until the matrix contains a total
of N ∗ �K+ 1� interactions. See Figure 1H.

Diagonal. The diagonal influence matrix reflects a
situation (as in the hierarchical structure) in which
decisions can be ordered such that low-ranked deci-
sions never affect high-ranked decisions, yet decision
1 is not necessarily the most central decision (as it was
in the hierarchical structure). Starting with xs along
the main diagonal, this matrix is created by randomly
adding xs below the diagonal until the matrix con-
tains a total of N ∗�K+1� interactions. For an example,
see Figure 1I. A number of DSMs have diagonal, or
close to diagonal, influence matrices. See, for instance,
Figure 3, which shows the DSM for the major tasks of
a cartridge development project at Kodak, as reported
by Ulrich and Eppinger (2007).

Dependent. The dependent influence matrix cap-
tures an instance in which a handful of decisions
are affected by virtually every other decision the

Figure 3 Design Structure Matrix for the 14 Major Tasks of Kodak’s
Cheetah Project (Cartridge Development)

xxxx

xxx

xxxx

xx

xxxx

xxx

xxxxxx

xxxxxxx

xxxx

xxxx

xx

xxx

xx

x

Source. Ulrich and Eppinger (2007) as in http://www.dsmweb.org/index.php
?option=com_content&task=view&id=53.



Rivkin and Siggelkow: Patterned Interactions in Complex Systems: Implications for Exploration
1074 Management Science 53(7), pp. 1068–1085, © 2007 INFORMS

firm makes, yet those decisions exert little influence
themselves. We construct such a matrix by transpos-
ing the centralized influence matrix. See Figure 1J.
A conceptual distinction arises among our 10 types

of influence matrices. For some types, the influence
matrix is fully determined once one sets N and K.
This is true of the local, block-diagonal, centralized,
hierarchical, and dependent types. For the others—the
random, small-world, preferential attachment, power-
law, and diagonal types—N and K guide the num-
ber of entries in the matrix, but chance influences
precisely where the xs lie.

3. Creation of Performance
Landscapes

To investigate the properties associated with each
type of influence matrix, we create a large number
of performance landscapes based on each type. First,
we specify the type, N , and K. N is the number of
binary decisions a firm is assumed to make about how
to configure its activities. Hence, an N -digit string of
zeroes and ones summarizes all the decisions a firm
makes that affect its performance. We represent this
“choice configuration” as d= d1d2 · · ·dN , with each di
either zero or one. Next, the computer generates a
specific influence matrix of the desired type, consis-
tent with N and K.
The final and most intricate step is to assign a per-

formance level to each of the 2N possible configura-
tions of choices, as follows. Each decision i is assumed
to make a contribution Ci to overall firm value,
and this contribution is affected by the resolution
of decision i and the resolutions of other decisions:
Ci = Ci(di; other djs), where the identity of the “js”
(i.e., those decisions that influence the contribution of
decision i) is specified by the influence matrix. For
each possible realization of di and the other relevant
djs, a contribution is drawn at random from a uniform
U�0�1� distribution. (Suppose, for instance, that row i
of an influence matrix shows decision i to be influ-
enced by three decisions—decision i itself and two
other decisions, as for the first decision in Figure 1A.
Then, the computer constructs a table with 23 con-
tributions for decision i: one random draw for each
possible combination of decision i and the two oth-
ers that affect it.) The overall performance associated
with a specific configuration d is the average over the
N contributions:

P�d�=
N∑

i=1
Ci�di� other djs�/N�

where the Cis are the relevant entries in the tables
of contributions mentioned above. One should note
that while the choice of influence matrix puts struc-
ture on the interaction pattern among decisions, the

model remains agnostic as to the type of interaction
(e.g., complementarity or substitution) that arises
among specific decisions. An intriguing avenue for
future research would be to consider the impact of
landscape-generating mechanisms that prescribe par-
ticular relations among the contribution values. (See
also the conclusion section of this paper.)

4. Landscape Characterization
We use each of the 10 different influence matrices
to generate performance landscapes and determine a
number of topographical characteristics of the result-
ing landscapes. For all simulations, we consider the
case of N = 12. (Our results are insensitive to the pre-
cise choice of N . Results for N = 8 and N = 16 are
available upon request from the authors.) For each set
of landscapes with different interaction patterns, we
hold the total number of interactions constant. In par-
ticular, we consider influence matrices with 24, 36, 48,
60, 72, and 84 interactions, corresponding to values
of K in the traditional random setup of one through
six.5 Below, we occasionally report that the character-
istics of the landscapes produced with different influ-
ence matrices are statistically significantly different
from one another; in each case, we conducted a t-test
on differences in the simulation results and found a
p-value less than 0.001, making it highly unlikely that
reported differences are simply chance occurrences.
A key characteristic of a landscape—indeed, the

one we examine most closely—is the number of local
peaks it contains. A local peak is a configuration d
such that no configuration d′ exists that differs from
d in only one decision and has higher performance
than d. Prior work on the random NK model has doc-
umented that increases in K lead to an increase in the
number of local peaks (Kauffman 1993). The organiza-
tional implications of this feature have been discussed
by Levinthal (1997), Rivkin (2000), and others. In con-
trast, this study is concerned with the number of local
peaks that are to be found in landscapes with differ-
ent underlying patterns of interactions given a fixed
value of K, i.e., holding the total number of interac-
tions constant.
The top panel of Table 2 reports the number of

local peaks for random, local, and small-world matri-
ces. Recall that the small-world setup involves the
parameter, p, the probability of nonlocal interac-
tions, and it includes as special cases the local influ-
ence matrix (p= 0) and the random influence matrix
(p= 1). Two patterns in the panel are noteworthy.
First, as the interaction structure becomes increasingly

5 For K > 5 (given N = 12), it is not possible to construct diagonal,
hierarchical, or scale-free influence matrices. As a result, because
we are interested in comparisons across influence matrices, we do
not investigate values larger than K = 6.
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Table 2 Characteristics of Local Peaks for Small-World Influence Matrices

(local) (random)
p= 0�0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Panel 1. Average number of local peaks
K = 1 5�0 5�1 4�8 4�6 4�7 4�2 4�5 4�5 4�6 4�7 4�3 4�8
K = 2 14�2 13�2 13�8 13�4 12�2 12�5 12�0 12�0 11�4 11�9 11�3 11�7
K = 3 27�5 28�8 26�2 25�2 24�6 24�4 24�3 23�4 23�2 23�5 23�0 23�1
K = 4 48�5 46�9 44�5 44�5 42�5 41�7 40�3 39�9 40�0 39�4 39�3 39�3
K = 5 71�7 69�2 67�3 66�1 64�8 63�0 61�4 61�9 62�2 61�8 60�7 60�8
K = 6 98�2 97�2 95�0 93�3 92�1 90�6 90�1 89�4 88�9 88�3 88�5 88�7

Panel 2. Standard deviation of number of local peaks
K = 1 3�5 3�5 3�3 3�4 3�1 2�9 3�0 3�2 3�2 3�4 2�7 3�0
K = 2 6�6 5�5 5�7 6�2 5�5 5�1 5�1 5�3 4�7 5�1 4�9 4�9
K = 3 7�4 7�5 6�7 6�4 6�6 6�0 6�3 6�5 5�5 5�8 5�8 6�1
K = 4 8�7 8�7 7�4 6�9 7�6 7�4 6�6 6�3 6�5 6�1 6�9 6�9
K = 5 7�4 8�2 8�2 7�8 7�5 7�4 7�5 7�4 7�3 7�7 7�1 8�1
K = 6 7�9 8�6 7�8 8�7 7�7 8�4 8�2 8�1 8�6 7�9 7�8 8�5

Panel 3. Average local-peak performance (as a portion of maximum performance attainable on landscape)
K = 1 0.947 0.955 0.954 0.951 0.956 0.952 0.951 0.955 0.949 0.947 0.954 0.951
K = 2 0.907 0.912 0.912 0.908 0.909 0.910 0.910 0.914 0.911 0.913 0.910 0.909
K = 3 0.882 0.882 0.881 0.883 0.881 0.883 0.887 0.883 0.884 0.883 0.883 0.879
K = 4 0.860 0.864 0.866 0.865 0.865 0.866 0.866 0.867 0.865 0.866 0.863 0.866
K = 5 0.849 0.849 0.852 0.850 0.851 0.851 0.852 0.851 0.851 0.856 0.852 0.853
K = 6 0.837 0.843 0.844 0.843 0.842 0.840 0.841 0.843 0.843 0.843 0.842 0.844

Panel 4. Standard deviation of local-peak performance
K = 1 0.053 0.042 0.047 0.050 0.045 0.050 0.049 0.045 0.054 0.052 0.046 0.050
K = 2 0.063 0.062 0.061 0.063 0.065 0.064 0.063 0.061 0.062 0.061 0.063 0.064
K = 3 0.066 0.066 0.067 0.068 0.069 0.068 0.066 0.066 0.067 0.069 0.067 0.067
K = 4 0.068 0.066 0.067 0.066 0.066 0.068 0.067 0.067 0.066 0.068 0.067 0.067
K = 5 0.066 0.066 0.066 0.067 0.065 0.066 0.067 0.067 0.067 0.066 0.066 0.066
K = 6 0.065 0.065 0.064 0.065 0.065 0.066 0.065 0.066 0.065 0.065 0.065 0.065

Note. Each result is an average over 200 landscapes of each type.

random (i.e., as p increases), the number of local peaks
declines. The change, however, is rather modest—
a decrease of 10%–20% as one moves from local to
random influence. Second, the decline in the number
of local peaks is fairly linear with respect to p. The
correlation between the number of peaks and p ranges
from −0	73 to −0	92 for different values of K. This
near-linearity stands in stark contrast to the results
of Watts and Strogatz (1998), who identify a num-
ber of highly nonlinear relationships in small-world
networks, e.g., between the clustering coefficient and
p, and between the characteristic path length and
p. Thus, while certain aspects of small-world net-
works respond nonlinearly to p, the number of local
peaks in performance landscapes based on small-
world influence matrices behaves rather smoothly as
p is changed.
The other panels of Table 2 examine, as a function

of p and K, the standard deviation of the number
of local peaks across landscapes, the average per-
formance associated with a local peak (measured as
a fraction of the maximum attainable performance),
and the standard deviation in that performance. All of
these features are remarkably insensitive to p. Because
the landscape features we study depend little on p

or, in the case of the number of local peaks, behave
linearly in p, we focus below on the extreme cases,
the local and random influence matrices, and not on
matrices with intermediate values of p.
The first panel of Table 3 contains the number of

local peaks for the other seven influence matrices. For
reference’s sake, we again include the results from
the local and random matrices. The panel shows that
landscapes based on the same number of total interactions
but different interaction patterns can contain dramatically
different numbers of local peaks. On K = 2 landscapes, for
instance, the number of local peaks ranges from 3.4
for landscapes based on centralized influence matri-
ces to 133.3 for landscapes based on dependent influ-
ence matrices. Similarly, for K = 5, the range is from
18.8 (centralized) to 238.2 (dependent).6 The ends of
these ranges differ markedly from the number of
local peaks derived from the frequently used random
influence matrix.
One immediate consequence of the different num-

ber of local peaks is that firms are much more likely
to find the global peak in landscapes with centralized

6 As a benchmark, note that a fully interdependent influence matrix,
with N = 12 and K = 11, has 315.1 local peaks on average.
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Table 3 Characteristics of Landscapes Based on Different Types of Influence Matrices

Preferential
Centralized Hierarchical Scale-free Random attachment Local Block-diagonal Diagonal Dependent

Panel 1. Average number of local peaks
K = 1 1�9 2�3 4�5 4�8 5�0 5�0 5�6 7�6 55�7
K = 2 3�4 4�9 10�3 11�7 12�1 14�2 16�5 21�6 133�3
K = 3 6�2 9�7 20�5 23�1 23�4 27�5 33�6 43�6 177�1
K = 4 11�1 24�3 35�1 39�3 36�9 48�5 40�2 74�2 209�5
K = 5 18�8 64�3 56�3 60�8 57�7 71�7 82�9 114�4 238�2
K = 6 32�6 88�7 80�7 98�2 100�3 248�7

Panel 2. Fraction of low-exploration firms that reach global peak (%)
K = 2 56�4 42�2 35�1 29�4 27�5 24�2 28�9 19�8 3�3
K = 4 25�3 16�7 17�0 12�0 9�6 9�7 9�4 8�0 1�5

Panel 3. Portion of all local peaks within Hamming distance of 4 of the global peak (%)
K = 2 6�4 17�9 31�9 30�1 33�1 37�5 49�9 29�2 30�8
K = 4 10�6 15�7 19�2 20�6 20�0 20�6 26�5 19�1 24�5

Panel 4. Standard deviation of number of local peaks
K = 1 0�3 0�7 3�1 3�0 2�8 3�5 4�8 4�9 27�5
K = 2 0�7 1�2 7�4 4�9 4�8 6�6 14�2 9�1 35�7
K = 3 1�1 1�8 12�9 6�1 7�0 7�4 18�8 11�3 31�4
K = 4 1�7 3�7 19�0 6�9 8�4 8�7 13�1 14�4 28�3
K = 5 2�5 7�0 26�3 8�1 11�4 7�4 23�3 15�8 20�1
K = 6 3�5 8�5 12�1 7�9 18�3 21�8

Panel 5. Average local-peak performance (as a portion of maximum performance attainable on landscape)
K = 1 0.957 0.952 0.931 0.951 0.945 0.947 0.949 0.933 0.880
K = 2 0.921 0.919 0.897 0.909 0.904 0.907 0.912 0.892 0.846
K = 3 0.902 0.889 0.871 0.879 0.879 0.882 0.889 0.866 0.834
K = 4 0.883 0.856 0.855 0.866 0.862 0.860 0.871 0.844 0.830
K = 5 0.865 0.836 0.844 0.853 0.847 0.849 0.857 0.830 0.822
K = 6 0.852 0.844 0.840 0.837 0.843 0.818

Panel 6. Standard deviation of local-peak performance
K = 1 0.062 0.066 0.068 0.050 0.052 0.053 0.049 0.055 0.069
K = 2 0.078 0.071 0.073 0.064 0.068 0.063 0.062 0.066 0.074
K = 3 0.076 0.079 0.075 0.067 0.071 0.066 0.067 0.070 0.073
K = 4 0.078 0.078 0.074 0.067 0.071 0.068 0.069 0.073 0.072
K = 5 0.076 0.074 0.071 0.066 0.071 0.066 0.069 0.073 0.071
K = 6 0.072 0.065 0.069 0.065 0.067 0.069

Note. Each result in Panels 1, 2, and 4–6 is an average over 200 landscapes. Each result in Panel 3 is an average over 50 landscapes.

interaction patterns than in landscapes that have
dependent interaction patterns. Placing a firm on
every point of the landscape and letting each firm
continue to search for superior alternatives that dif-
fer from the firm’s current choices in one decision
until the firm has reached a local peak, we report in
the second panel of Table 3 the fraction of firms that
reach the global peak. In general, a pronounced neg-
ative relationship exists between the number of local
peaks and the fraction of firms that reach the global
peak. For instance, when K = 2, 56.4% of firms reach
the global peak on centralized landscapes, while only
3.3% reach the global peak on dependent landscapes.
An additional feature of interest concerns the clus-

tering of local peaks. Are local peaks clustered around
the global peak or are they spread out? As previous
studies have argued (Kauffman 1993, Rivkin 2000),

the answer to this question is interesting because it
captures the degree to which knowledge of one good
combination of choices conveys information about
the whereabouts of other good combinations. In the
third panel of Table 3, we report the fraction of local
peaks that differ from the global peak along four or
fewer decisions. For K = 2 landscapes, we detect very
different degrees of clustering of local peaks. Block-
diagonal landscapes appear to be the most clustered,
and centralized landscapes the most dispersed. For
K = 4 landscapes, the differences remain but are much
smaller.
In Table 3, the fourth panel notes the standard devi-

ation of the number of local peaks across landscapes.
(Given 200 landscapes of each type, the standard error
of each mean in the first panel would thus be given by
the standard deviation divided by

√
200− 1 ≈ 14	1	�
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In general, for each pattern the standard deviation
increases with the number of local peaks, except for
the block-diagonal and the dependent patterns, for
which the standard deviation declines slightly at high
levels of K. For all patterns, the coefficient of variation
(standard deviation/mean) declines as K increases.7

Much of the interest in the number of local peaks in
the past literature has arisen because of performance
implications: As K increases and the web of poten-
tial conflicting constraints thickens, local peaks pro-
liferate, and it becomes harder for a searching firm
to achieve a high elevation (Kauffman 1993, Levinthal
1997). It is possible, however, that the proliferation
of local peaks that comes from the pattern of inter-
actions, not the number of interactions (K), has little
impact on local peak height. Perhaps, at a given level
of K, the numerous peaks associated with, say, the
dependent influence matrix are just as high as the few
peaks of the centralized matrix. To examine this pos-
sibility, we report the average performance of local
peaks in Panel 5 of Table 3 (and corresponding stan-
dard deviations in Panel 6). Holding the interaction
pattern fixed, i.e., looking down each column of Panel
5, we see a negative impact of K on local peak height,
familiar from prior literature on random interaction
patterns. Likewise, holding K fixed, i.e., examining
each row, we also see a strong negative correlation
between the number of peaks and average peak per-
formance (ranging from −0	95 for K = 1 to −0	80 for
K = 5). Thus, the average height of peaks declines as
the count of peaks rises, regardless of whether their
number is increased by more interactions or by a
change in interaction pattern.
One should note, though, that average peak height

does not give a full picture of how well firms might
perform on a particular landscape. Firms that search
a landscape are, by the end of their search processes,
not equally distributed across all local peaks because
some peaks “draw in” more firms than do others.8

The average performance of firms, then, is a func-
tion of both the average peak heights and the num-
ber of firms attracted to each peak, a feature that

7 The largest variance is found for landscapes based on scale-free
matrices. Here, however, the variance is boosted in part by the
landscape-generating mechanism itself, which guarantees an aver-
age of N ∗K off-diagonal interactions, but permits some variation in
the number of interactions from one specific landscape to another.
8 More technically, suppose that each firm searches the landscape
by changing one decision at a time. A local peak’s one-decision
basin of attraction is the set of points from which a firm would be
able to reach that peak by a series of upward steps, each involving
adjustment to a single decision. Local peaks on a given landscape
will differ in how large their one-decision basins of attraction are.
When firms are assigned initial configurations of choices at ran-
dom, local peaks with larger basins will “draw in” more firms than
peaks with smaller basins.

can be affected by the underlying interaction pat-
tern. To take both effects into account, one needs to
analyze the performance of firms that have searched
the landscape (as we do in §6) rather than inferring
performance differences from local peak heights.
We conclude our analysis of the features of perfor-

mance landscapes by examining two influence matri-
ces drawn from the literature on DSMs. Figures 2
and 3 replicate the DSMs of an automobile brake sys-
tem and a cartridge design. Using each of these influ-
ence matrices, we create 50 performance landscapes
and compute the number of local peaks that arise on
average. The brake system is composed of N = 13
elements, while the cartridge project is composed of
N = 14 elements. One can measure K for each matrix
by counting the number of off-diagonal interactions
and dividing by N ; a random interaction matrix with
this level of K would have the same number of total
interactions. This yields K = 3	8 and K = 2	5 for the
two DSMs, respectively. For the brake system, we find
that 61.2 local peaks arise on average. This is statis-
tically significantly higher than the 53.0 local peaks
in random landscapes with K = 4 (and N = 13). For
the cartridge system (with K = 2	5), we find 57.6 local
peaks on average, which is statistically significantly
higher than the 26.2 local peaks in random landscapes
with K = 2 (and N = 14) and not statistically different
from the 53.3 local peaks found on random land-
scapes with K = 3. Thus, in each case, the actual per-
formance landscape appears to be more rugged than
the random benchmark.

5. Intuition
Even if the total number of interactions among deci-
sions is held constant, performance landscapes can
differ markedly in the number of local peaks they
contain. To understand what drives these differences,
consider the two influence matrices that produce the
fewest and the most peaks: the centralized and the
dependent matrices, respectively. In particular, take
the matrices shown in Figures 1G and 1J, for which
N = 12 and the total number of interactions is the
same as in a random matrix with K = 2. For each
of these two, we describe the shapes of the resulting
landscapes as well as the underlying intuition for the
number of local peaks that arise.
The centralized matrix is distinguished by the

large number of columns that contain only one x.
These columns represent decisions that do not affect
the contributions of other choices. The presence of
such “uninfluential” decisions creates large smooth
subspaces on each performance landscape—gently
sloped plateaus—that limit the number of local peaks
(for a related notion of neutral networks, see Lobo
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et al. 2004). In Figure 1G, for instance, suppose that
decisions 1, 2, and 3 have been set. The contribution
of each remaining decision then depends only on the
resolution of that decision itself. The best configura-
tion of the remaining choices conditional on d1, d2,
and d3 is easy to find: Simply set d4 to zero or one,
whichever produces higher performance, and then do
the same for d5�d6� 	 	 	 � d12. Because decisions 4–12 are
uninfluential, the alteration of each does not affect the
contributions of the other decisions, and this simple
procedure produces the greatest possible performance
conditional on decisions 1–3. Thus, for each possible
configuration of {d1 d2 d3}, there is a plateau that rises
smoothly to a maximum, and the total number of
local peaks can be no greater than eight, the number
of different configurations of {d1 d2 d3} (Solow et al.
1999a). In fact, the number may be smaller than eight
if the maximum point on any plateau is below an
adjacent point on another plateau. The actual number
of local peaks, on average, is 3.4 (Table 3). (For a visu-
alization of a landscape produced by a centralized
matrix that shows the presence of distinctive plateaus,
see Figure EC.2 of online Appendix 1, which is pro-
vided in the e-companion.)9

In more intuitive terms: The presence of uninflu-
ential decisions reduces the number of choices that
threaten to confound the decision maker and face
her with difficult trade-offs. In the matrix in Fig-
ure 1G, for instance, once decisions 1, 2, and 3 have
been made, the remaining choices are obvious. The
number of potentially conflicting constraints plunges,
and this simplifies matters dramatically. As the effec-
tive dimensionality of the problem falls, broad explo-
ration for solutions becomes less valuable (as we
demonstrate directly in the next section).
In contrast to the centralized matrix, the depen-

dent matrix is distinguished by the large number of
rows that contain only one x and the small num-
ber of rows that contain many xs. In matrix 1J, for
instance, each of decisions 1–9 makes a contribution
to performance that is not influenced by other deci-
sions, while decisions 10–12 are sensitive to many
other choices. The “uninfluenced” decisions 1–9 create
a distinctive topography: The performance contribu-
tions from these choices alone form a smooth, single-
peaked surface, as would arise from an N = 9, K = 0
matrix. Consider two choice configurations that differ
only in terms of one of these nine decisions. The per-
formance of these adjacent points can differ from one
another by no more than 1/N , the maximum perfor-
mance contribution of the decision that distinguishes

9 An electronic companion to this paper is available as part of
the online version that can be found at http://mansci.journal.
informs.org/.

those configurations. Accordingly, decisions 1–9 form
a smooth underlying surface. Added onto that sur-
face to form the complete performance landscape are
the contributions of decisions 10–12. These contribu-
tions are very sensitive to many other choices: Indeed,
the contributions of decisions 11 and 12 change from
one randomly drawn number to another whenever
any decision is altered. A change in a single decision
can alter the total contributions of decisions 10–12 by
as much as 3/N . Naturally, the addition of relatively
large random increments to a smooth underlying sur-
face creates a landscape with many, many local peaks,
akin to the dimpled surface of a golf ball.10 (A land-
scape produced by a dependent matrix, depicted in
Figure EC.3 of online Appendix 1, shows the very
bumpy nature of the terrain.)
More intuitively, the concentration of many deci-

sions’ influences onto a handful of decisions creates
the potential for many conflicting constraints and
lots of internally consistent configurations of choices.
From each of these consistent configurations, a change
in one decision leads to lower performance, but
changes in two or more decisions might cause per-
formance to improve again. This is especially likely
when many decisions are uninfluenced, causing all
configurations to have a similar underlying level of
performance and permitting small differences to cre-
ate numerous local optima. As we show below, this
increases the need for broad exploration to escape
poor local optima and to find a good one.
The intuition for the centralized and dependent

matrices lead us to a hypothesis: For a given num-
ber of total interactions in an influence matrix, the
number of local peaks declines with the number of unin-
fluential decisions �i.e., those with one x per column� and
rises with the number of uninfluenced decisions �i.e., those
with one x per row�. To examine this hypothesis fur-
ther, we focus on K = 3, generate 50 influence matri-
ces of each type shown in Table 3, count the number

10 In contrast, if the underlying surface is already somewhat rugged,
the perturbations caused by decisions that are affected by many
other decisions create fewer additional local peaks. The following
analysis confirms this intuition. An N = 12, K = 0 landscape is
very smooth, containing only one peak. Its influence matrix con-
tains xs only on the diagonal. If we fill one row of this influence
matrix with xs, i.e., make one decision’s contribution dependent
on all other decisions, the average number of local peaks increases
sharply to 58. Now start with an influence matrix in which deci-
sion 1 is affected by itself and decision 2, decision 2 is affected
by itself and decision 3, etc. This influence pattern, which contains
no uninfluenced decisions, leads to a performance landscape with
nine local peaks. Filling one row of this influence matrix with xs
increases the number of local peaks only to 39. An intriguing impli-
cation of this finding is that adding interactions to some influence
matrices can reduce the number of local peaks by effectively chang-
ing the underlying pattern of interactions.
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of uninfluential and uninfluenced decisions in each
matrix, generate a performance landscape with each,
and count the number of local peaks on each. This
produces a sample of 450 landscapes (50 landscapes
per type∗9 types). We then use this sample to regress
the number of local peaks on the number of unin-
fluential decisions and the number of uninfluenced
decisions, and we obtain

number of local peaks
= 27	4− 4	0 ∗number of uninfluential decisions

�t-stat=−4	9�
+ 19	8 ∗number of uninfluenced decisions	

�t-stat= 14	9�	
The very large t-statistics confirm the power of these
two variables to predict the number of local peaks.
Indeed, the two variables explain 89.3% of the vari-
ance in the number of local peaks.
This suggests that one can inspect two influence

matrices, count the number of uninfluential and unin-
fluenced decisions, and predict with accuracy which
is likely to produce more local peaks and, accordingly,
which will probably require more exploration. We
return to the power and the limits of this hypothesis
in the concluding section.

6. Value of Exploration
In prior sections, we have asserted that the prolifer-
ation of local peaks increases the value of, and the
need for, broad exploration. Other research has shown
this to be true when the proliferation comes from an
increase in K (Kauffman 1993, Rivkin and Siggelkow
2003). Here, we illustrate that interaction patterns that
produce more local peaks, even if K is fixed, also call
for broader exploration in the long run. To do so, we
examine the performance paths of three firms:
1. A low-exploration firm starts at a random choice

configuration d, evaluates in each period a randomly
chosen alternative d′ that differs from d in terms of
one decision, and adopts d′ if it yields higher perfor-
mance. The firm continues to do so each period until
it can find no superior alternatives. At that point, it
rests atop a local peak.
2. The medium-exploration firm allocates some of its

search efforts to the consideration of more distant
alternatives. Specifically, in each period it considers
a randomly chosen alternative d′ that differs from
d in terms of one or two decisions. For instance,
in an N = 12 simulation, a medium-exploration
firm at 000000000000 might evaluate the alternative
010000000100. We refer to this firm as having a search
radius of two.
3. The high-exploration firm considers each period

an alternative d′ that differs from d in terms of as
many as five decisions (search radius= 5). Although

we define “high-exploration” as the ability to change
as many as five decisions, our results are not sensitive
to this specific choice.11

All firms are given the same randomly chosen
starting point and are allowed to search for better con-
figurations for 2,500 periods. We calculate the perfor-
mance of each firm relative to the global peak of the
landscape, record the performance level of each firm
over time, and then generate a new performance land-
scape with the same underlying influence matrix. For
each type of influence matrix, we repeat this exercise
500 times.12 The performance differences across firms
capture the value of broader exploration in the face of
each type of influence matrix. In particular, because
the model assigns zero cost to search, the performance
differences can be interpreted as the most a firm
would be willing to pay for the broader search capa-
bility. (While we use a firm’s search radius to manip-
ulate its degree of exploration directly, exploration
can also be influenced by the firm’s organizational
structure. For an example with results consistent with
the subsequent findings of this section, see online
Appendix 2, which is provided in the e-companion.)
We discuss long-run performance differences and

then turn to performance levels over time. Table 4
reports the average performance advantage of the
medium-exploration firm over the low-exploration
firm in Period 2,500 (Panel 1) and the advantage of the
high-exploration firm over the low-exploration firm
at the same time (Panel 2). The results reveal three
striking patterns concerning the value of broader
exploration. First, as one would expect in a setup
where exploration is made costless, medium- and
high-exploration firms have markedly better long-run
performance than low-exploration firms for all levels
of K and for all types of influence matrices. The per-
formance advantage of the medium-exploration firm
ranges from 1.0% of 10.1% of the peak heights shown
in Panel 5 of Table 3, and the advantage of the high-
exploration firm ranges from 2.2% to 16.4%. All differ-
ences are highly statistically significant with p < 0	001.
Second, within each type of influence matrix (i.e., for
each column of the table), higher levels of K make

11 Because each firm evaluates alternatives chosen at random from
those within its search radius, the relative frequency of search for
more distant alternatives is dictated by the frequency with which
such alternatives exist. The medium-exploration firm, for instance,
has 12 alternatives that differ from the status quo in terms of one
decision and 66 that differ in terms of two decisions. Hence, it
considers a one-decision change 12/�12+66�= 15% of the time and
a two-decision change 85% of the time. The high-exploration firm
considers a one-, two-, three-, four-, and five-decision change 1%,
4%, 14%, 31%, and 50% of the time, respectively.
12 We examine 2,500 periods because, by that time, modeled firms
have largely exhausted their improvement opportunities. A sample
size of 500 landscapes of each type produces performance differ-
ences across firms that are statistically significant.
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Table 4 Long-Run Value of Broader Exploration

Preferential
Centralized Hierarchical Scale-free Random attachment Local Block-diagonal Diagonal Dependent

Panel 1. Performance difference between medium-exploration firm and low-exploration firm
K = 1 0�010 0�017 0�020 0�023 0�022 0�026 0�034 0�027 0�041

0�050 0�052 0�046 0�039 0�039 0�037 0�041 0�042 0�050
K = 2 0�027 0�027 0�035 0�033 0�035 0�045 0�058 0�046 0�072

0�071 0�066 0�064 0�051 0�056 0�054 0�054 0�064 0�072
K = 3 0�025 0�042 0�041 0�036 0�039 0�050 0�068 0�049 0�076

0�071 0�075 0�075 0�061 0�063 0�068 0�066 0�074 0�072
K = 4 0�037 0�049 0�045 0�041 0�043 0�052 0�072 0�047 0�080

0�073 0�075 0�077 0�070 0�073 0�071 0�072 0�073 0�077
K = 5 0�043 0�058 0�043 0�050 0�048 0�053 0�077 0�063 0�079

0�076 0�080 0�073 0�071 0�079 0�069 0�071 0�076 0�070
K = 6 0�050 0�047 0�058 0�059 0�070 0�083

0�075 0�071 0�075 0�076 0�071 0�078

Panel 2. Performance difference between high-exploration firm and low-exploration firm
K = 1 0�021 0�027 0�026 0�025 0�028 0�027 0�032 0�034 0�044

0�051 0�052 0�044 0�040 0�040 0�037 0�041 0�041 0�048
K = 2 0�049 0�050 0�054 0�044 0�051 0�054 0�063 0�063 0�084

0�067 0�064 0�060 0�053 0�055 0�050 0�053 0�061 0�069
K = 3 0�056 0�071 0�068 0�062 0�064 0�070 0�082 0�077 0�101

0�067 0�073 0�072 0�058 0�060 0�061 0�064 0�067 0�069
K = 4 0�072 0�089 0�078 0�075 0�082 0�082 0�102 0�087 0�116

0�068 0�070 0�071 0�064 0�066 0�063 0�067 0�066 0�068
K = 5 0�089 0�105 0�090 0�091 0�091 0�089 0�114 0�109 0�126

0�073 0�072 0�069 0�066 0�071 0�064 0�064 0�072 0�065
K = 6 0�096 0�094 0�103 0�106 0�116 0�134

0�070 0�063 0�073 0�068 0�069 0�069

Notes. Each cell contains the performance difference in Period 2,500 between a firm that engages in either medium exploration
(evaluates alternatives that differ in up to two decisions from the status quo) or high exploration (evaluates alternatives that differ in
up to five decisions from the status quo) and a firm that engages in low exploration (i.e., evaluates only alternatives that differ in one
decision from the status quo). Performance is measured relative to the highest performance possible in each landscape. Performance
differences are averages over 500 landscapes. Standard deviations are given under each performance difference. Standard errors are
smaller by a factor of

√
500− 1 �≈22). All performance differences in this table are statistically significant with p < 0�001.

broad exploration more valuable—a finding in line
with the prior research mentioned above.
Third and crucially, the long-run value of broad ex-

ploration varies significantly across types of influence
matrices even if the total number of interactions is held
constant (i.e., for each row of the table). Moreover,
the within-row differences correspond closely to dif-
ferences in the number of local peaks. As the number
of local peaks increases, the value of broad exploration
increases even if K is fixed.13 For K = 2, for instance,
the centralized matrix produces only 3.4 local peaks
on average, and the performance advantage of the
medium-exploration firm is merely 0.027, while the
dependent matrix generates many more local peaks,
133.3, and the value of broader exploration is statisti-
cally significantly higher at 0.072 (p < 0	001). Indeed,
the number of local peaks appears to do as good a

13 For the diagonal influence matrix, the benefit of broader search
is somewhat lower than one would expect given its number of
local peaks. For the hierarchical matrix, it is slightly larger.

job as K at predicting the value of broad exploration.
Casual inspection of the top panels of Tables 3 and 4
supports this notion. It is easy to find pairs of land-
scapes that have approximately the same number of
local peaks and lead to the same performance advan-
tage for the medium-exploration firm despite differ-
ences in K. Consider, for instance, the random matrix
with K = 2 and the centralized matrix with K = 4;
the scale-free matrix with K = 3 and the centralized
matrix with K = 5; and the dependent matrix with
K = 1 and the scale-free matrix with K = 5. More rig-
orously, an analysis of the value of broad exploration
in Table 4, the number of local peaks in Table 3, and K
reveals that (a) the number of local peaks is a strong
and robust predictor of the long-run value of broad
exploration, with a correlation coefficient of 0.81 for
the medium-exploration firm and 0.77 for the high-
exploration firm; and (b) the number of local peaks ex-
plains as much of the variance in the value of broad
exploration as does K alone.
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Overall, the long-run results lend strong support
to two related notions. First, the marginal value of
broader exploration is greater in the long run on land-
scapes with more local peaks. Second, the investment
in broader exploration that a firm can justify depends
on the pattern—not just the density—of interactions
among choices. Our findings validate the prior litera-
ture’s results on the impact of K alone on the value of
exploration, but they highlight an important caveat:
Those results implicitly assume that the underlying
interaction pattern remains constant as K changes.
Interesting dynamics underlie the long-run results

we have just described. To be concrete, we focus on
the difference between a high-exploration and a low-
exploration firm. In comparing the performance of
these firms over time, one can identify three phases
with distinct dynamics. During the earliest periods,
a high-exploration firm can enjoy an advantage over
the low-exploration firm for the following reason.
Both firms start from the same randomly chosen con-
figuration of choices, and each evaluates an alterna-
tive within its search radius, accepting the alternative
only if it yields better performance. The average
height of points within a search radius of five of a ran-
domly chosen point is, in expectation, the same as the
average height of points within a search radius of one,
but the variance of heights in the first set of points
is greater. Because firms accept only improvements
and start with the same performance level, the first
improvements of the low- and high-exploration firms
are essentially random draws from the upper tails
of two distributions with equal means but different
variances. The draw is greater in expectation for the
firm that experiences the higher variance, the high-
exploration firm. Intuitively, an upward long jump
from a randomly chosen location brings a greater
chance of finding a dramatic improvement than does
a tweak from that location.
Subsequently, the low-exploration firm scales a

nearby peak, exploiting the local correlation of the
landscape (i.e., the fact that above-average locations
tend to be surrounded by other above-average loca-
tions). Meanwhile, the high-exploration firm wastes
many periods weighing distant alternatives that yield
little or no performance improvement. As a result, the
low-exploration firm enjoys a period of advantage in
this second phase.
Lastly, however, the low-exploration firm exhausts

its improvement opportunities and gets stuck on an
average local peak, while the high-exploration firm
long continues to discover better alternatives. Even-
tually, it reaches a relatively high local peak and
achieves the higher performance evidenced in Table 4.
These three phases can be seen in Figure 4A, which

shows the average difference in cumulative perfor-
mance between a firm with search radius five and

Figure 4 Cumulative Performance Differences Between High- and
Low-Exploration Firms

A. Performance landscape with centralized
interaction pattern and K = 1

B. Performance landscape with centralized
interaction pattern and K = 3

C. Performance landscape with centralized
interaction pattern and K = 6
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a firm with search radius one on a landscape with an
underlying centralized interaction pattern and K = 1.
In early periods, the high-exploration firm outper-
forms the low-exploration firm, leading to an ever-
increasing cumulative performance advantage until
Period 15. (Please note that the x-axis has a log-
arithmic scale.) Starting from that point, the low-
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exploration firm outperforms the high-exploration
firm until about Period 230. During this time, the low-
exploration firm outperforms the high-exploration
firm to such a degree that even the cumulative perfor-
mance turns to the low-exploration firm’s advantage.
After Period 230, the high-exploration firm’s broader
search starts to pay off, leading to higher per-
formance and higher cumulative performance after
about Period 560.
As the number of interdependencies increases (Fig-

ures 4B and 4C), the size of the effects in each of
the three phases changes. (Similar dynamics can be
seen for the other interaction patterns.) Recall, that
the key driver of the performance difference in the
first phase was that configurations further away from
a randomly chosen starting point have greater per-
formance variance than do configurations that are
close by. As interactions increase and the landscape
becomes more rugged, the variance increases for all
radii. However, it increases more for configurations
close by than for configurations far away. As a conse-
quence, the difference between the variances of per-
formances that local and broad searches can access
decreases, and the first effect becomes smaller as K
increases.14

The performance advantage of the low-exploration
firm in the second phase has its root in the low-
exploration firm’s ability to reach a local peak rela-
tively quickly. As K rises and the average height of
the (nearby) local peak decreases, one would expect
this performance advantage to decline.15 Figures 4B
and 4C bear out this intuition: The temporary perfor-
mance advantage of the low-exploration firm in Phase
2 declines as K increases. Lastly, as argued above, the
long-run value of broad exploration increases with the
number of local peaks. Consequently, the cumulative
performance advantage of the high-exploration firm
sets in earlier as K increases.

14 Performance correlation between adjacent configurations is high
when many decisions are unaffected by other decisions. As
K increases, this becomes less likely and performance variance
among nearby configurations increases. Configurations that are fur-
ther apart from each other are already less correlated at lower levels
of K. Hence, increasing the number of interdependencies tends to
affect their correlation less. For instance, for landscapes with cen-
tralized interaction patterns, the difference between the standard
deviation of performance values of configurations that lie within
a five-step radius of a focal point and the standard deviation of
performance of configurations that lie within a one-step radius of
a focal point decreases from 0.023 for K = 1 to 0.008 for K = 6. This
decrease is driven largely by an increase in the standard deviation
of performance of configurations that lie within a one-step radius.
15 It is possible that the short-term advantage of the high-explo-
ration firm and the intermediate performance advantage of the
low-performance firm depend on the interaction pattern per se, not
just K. We have not yet spotted robust relationships along these
lines, but we consider this an intriguing avenue for future research.

The upshot of these dynamics is that the appropri-
ate investment in exploration depends not only on
the number and pattern of interactions, but also on
the time horizon of a management team. The swings
in advantage shown in Figure 4 work against sim-
ple heuristics (such as “shorter horizons call for more
exploitation and less exploration”). By reproducing
Table 4 for earlier periods or by comparing cumu-
lative performance over different durations, one can
generate a wide variety of results without robust
patterns. Consequently, we emphasize performance
consequences in the long run, where patterns are
clear and stable. There, we find that the prolifera-
tion of local peaks, due to the number or pattern of
interactions, boosts the value of broad exploration.

7. Discussion and Conclusion
In management science, the study of complex sys-
tems has recently gained momentum as simulation
tools, originally developed in biology and physics,
have been applied to organizational, social, and tech-
nological settings. This paper aims to make such
simulation models more realistic by incorporating
into one particular model some of our empirical
knowledge of such settings. Many simulation mod-
els in this field of inquiry have two parts: a prob-
lem space (a performance landscape, an environment,
etc.), and entities that search (or move, or live) in
the problem space. The early models in this genre
were—as a natural starting point—fairly simplistic in
both respects. The original NK model, for instance,
which formed the starting point for many applica-
tions in the organization literature, assumed perfor-
mance landscapes in which the interactions among
elements were determined randomly and entities in
which change occurred only through incremental,
local search. While the latter assumption was appro-
priate for biological systems that evolve by mutations
to single, randomly chosen genes, it is dubious for
organizational, social, and technological systems in
which human agents can employ more sophisticated
forms of search. A number of studies have attempted
to model search more realistically, incorporating cog-
nition (Gavetti and Levinthal 2000) or internal orga-
nizational structure (Siggelkow and Rivkin 2005), for
instance.
The main thrust of this paper was to infuse more

realism into the first part of these simulation mod-
els, the creation of performance landscapes. The ran-
dom interaction assumption has often been justified
by pleading ignorance of what true interaction pat-
terns look like. That plea is implausible, we feel, in the
settings that interest management scientists, thanks to
recent empirical studies. These studies show that the
interactions among activities, product elements, deci-
sions, and decision makers are not random, but follow



Rivkin and Siggelkow: Patterned Interactions in Complex Systems: Implications for Exploration
Management Science 53(7), pp. 1068–1085, © 2007 INFORMS 1083

distinctive patterns. We identified 10 patterns (includ-
ing the random benchmark) and examined the char-
acteristics of landscapes produced by each. We found
that underlying interaction patterns affect landscape
topography substantially even if the total number of
interactions is held constant. In particular, dependent,
diagonal, and, to a lesser degree, local and block-
diagonal interaction patterns tend to generate perfor-
mance landscapes with substantially more local peaks
than the random interaction pattern, while centralized
and hierarchical interaction patterns typically lead to
substantially fewer local peaks. Interestingly, small-
world type interaction patterns exhibit linear, rather
than nonlinear, changes in the number of local peaks
as the probability of nonlocal interaction is changed.
The interaction patterns that produce very few local

peaks are marked by a handful of highly influen-
tial decisions and a large number of uninfluential
decisions. These patterns produce landscapes that are
easy to search: Once the handful of core decisions
are made, other choices fall into place naturally. As
a result, the decision maker faces a problem whose
true dimensionality is modest. In contrast, interac-
tion patterns with a handful of highly sensitive deci-
sions and a large number of uninfluenced decisions
tend to produce many local peaks. The uninfluenced
decisions produce a smooth underlying surface that
is made very rugged by the handful of sensitive
decisions. For a given level of K, we can explain a
remarkably high portion of the variance in the num-
ber of local peaks—nearly 90%—by reference to the
number of uninfluential and uninfluenced decisions.16

This suggests a practical rule of thumb for individ-
uals who are deciding how much to invest in long-
run exploratory efforts. Relatively little exploration is
required in systems where a handful of core decisions
influence a large number of peripheral, otherwise-
independent choices. More exploration is necessary
in systems where a large number of independent
decisions converge to influence a handful of choices.
We have emphasized the implications of these

results for the allocation of resources toward explo-
ration versus exploitation. When facing interaction

16 We suspect that our ability to explain so much of the variance
by looking only at polar cases, wholly uninfluential decisions, and
completely uninfluenced decisions, reflects an extreme assumption
of the NK model: A change in any influential decision completely
rerandomizes the contribution of a focal decision. Under a less
extreme assumption, a change in an influential decision would alter
the focal decision’s contribution, but not completely. In such a set-
ting, one might have to take into account more than simply the
number of wholly uninfluential and completely uninfluenced deci-
sions to anticipate the number of local peaks. For instance, one
might have to calculate how concentrated influence is in, and on,
a handful of decisions. This is a speculation that deserves investi-
gation in future research.

patterns that create many local peaks and when focus-
ing on long-run consequences, managers are well
advised to devote more resources to exploration.
Although our simulation results focus on the value
of broad exploration, we believe they also have ram-
ifications for other organizational phenomena. For
instance, prior research efforts with related models
have shown that the proliferation of local optima
makes it difficult for organizations to adjust success-
fully in the face of environmental change (Levinthal
1997), to imitate the successes of others (Rivkin 2000),
and to replicate their own successes (Rivkin 2001).
These research efforts have focused on increases in
the total number of interactions as the reason for the
proliferation of local peaks, but proliferation caused
by differences in influence matrices should have sim-
ilar effects. Thus, we see interaction patterns affecting
not just the appropriate degree of exploration, but also
the likely success of change, imitation, and replication
efforts.
Similar logic suggests a cautionary word about pre-

vious studies that have examined only random influ-
ence matrices. Most of these studies were concerned
with effects that arise as the number of interactions,
K, increases. Our results imply that comparative static
results with respect to changes in K, such as “imita-
tion becomes more difficult as K increases,” continue
to hold as long as the underlying interaction pattern
remains fixed. The results also show, however, that
K is not the only factor that determines landscape
characteristics and consequent competitive phenom-
ena. For instance, a firm that has based its competitive
advantage on a set of choices with high K and a cen-
tralized interaction pattern may find that its advan-
tage is eroded by imitation more easily than if it had
a lower value of K, but a diagonal interaction pattern.
The sensitivity of landscape topography to the

structure of the influence matrix suggests that other
aspects of the NK model might be fruitfully investi-
gated in future research. In the original NK model,
chance plays a powerful role in two places: in gen-
erating the influence matrix and in assigning contri-
butions Ci to sets of choices. Because it relies heavily
on chance and imposes little structure, the NK model
can reveal general properties of a wide class of sys-
tems, but it can say little about specific systems. Our
paper shows that, if we impose structure on the gen-
eration of influence matrices, we can refine predic-
tions about landscape topography. Similarly, if one
were to assign performance contributions in a more
structured way, one might obtain results that dif-
fered meaningfully from the results of the original
NK model. Prior research supports this speculation.
Solow et al. (1999b), for instance, find that assign-
ing contributions in alternative ways can attenuate a
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central finding of Kauffman’s early work, the “com-
plexity catastrophe” (Kauffman and Levin 1987). In an
application to political science, Axelrod and Bennett
(1993) use specific ethnic, religious, territorial, ideo-
logical, and historical data rather than arbitrary fig-
ures to generate a landscape of potential World War II
alignments. The use of actual data reduces the num-
ber of local peaks—stable configurations of nations—
from 209 to two. A similar study of alliances in a very
different setting—alliances of firms vying to establish
Unix standards for workstations—shows that actual
data can reduce the number of local peaks (in this
case, Nash-equilibrium alliances) from 256 to as few
as two, depending on the choice of unmeasured
rivalry parameters (Axelrod et al. 1995). Such stud-
ies suggest that it would be worthwhile to investigate
the impact of more structured contributions in the NK
model as well. To do so, however, one must find sen-
sible ways to characterize relations among contribu-
tions, something akin to the 10 influence matrices that
we culled from prior research.
Our results also have system-design implications

because firms can sometimes influence the interac-
tion patterns they face rather than take them as
given (Levinthal and Warglien 1999, Baldwin and
Clark 2000). Because optimization of high-dimen-
sional systems with many interdependencies is usu-
ally a difficult task, it may be very helpful to design
a system in a way that smoothes performance land-
scapes and facilitates the search for good solutions.
A management team might accomplish this by alter-
ing the pattern of interactions among elements in
a system, even if the total number of interactions
among the elements cannot be reduced. (For an inter-
esting example of a redesign of a computer software
architecture along these lines, see MacCormack et al.
2006.) Smoothing of a landscape may also make the
system more robust—able to recover effectively after
a perturbation in the mapping from choices to perfor-
mance. On the other hand, if competitors can repro-
duce a firm’s design of interactions, smoothing might
make local search a more powerful means for rivals
to rediscover a firm’s configuration of choices and to
copy its successes.
By managerial intervention or by the selective force

of births and deaths of systems, the patterns of inter-
actions present in organizational, social, and tech-
nological systems are likely to evolve. An exciting
question for future research is: What interaction pat-
terns will prevail over time? Or perhaps a contingent
question is appropriate: What conditions encourage
the emergence of which kinds of interaction patterns?
Simon (1962) makes a strong argument for nearly
decomposable systems, on the strength of their abil-
ity to improve module by module rather than in
systemwide fashion. Patterns of interaction, however,
may affect not only the power of exploration across

discrete modules, but also the ability of managers to
explore possibilities within each module. Our results
show that the pattern of interactions among decisions
can dramatically alter the search challenge that man-
agers face. Patterns that improve “searchability” may
very well prevail in ecological competition among
interaction patterns.

8. Electronic Companion
An electronic companion to this paper is available
as part of the online version that can be found at
http://mansci.journal.informs.org/.
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