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Theories of network evolution frequently focus on “network endogeneity,” which stresses predictable, path-dependent
evolution rooted in previous network structure. However, theories of technological evolution and innovation remind

us that networks may undergo significant change as technological discontinuities exert pressures on existing relationships
and firms engage in exploratory search. How can we incorporate sources of change into our theories of network evolution
instead of focusing so squarely on sources of inertia? By using recent advances in graph theory, we develop a more flexible
theory of network evolution by examining two patterns of partner selection that have the potential to change networks:
“shortcut” formation between relatively unconnected partner clusters, and the entry of new firms into the “main component”
of incumbent partners. Our findings suggest an important contingency for the endogeneity perspective: structural homophily
predicts shortcut formation but not alliance formation within clusters. Furthermore, we demonstrate that the pattern of
alliance formation between incumbents and new entrants to the alliance network is driven by a combination of endogenous
and exogenous mechanisms. New entrants attach to more prominent incumbents, but they are more likely to attach with
an alliance deal that comprises multiple partners. We demonstrate these findings in an industry where systemic technology
encourages cooperation and where network entry is prevalent—the mobile communications industry from 1993–2002.
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1. Introduction
Research on the evolution of alliance networks has
revealed two well-proven rules of partner selection
within these networks. Specifically, pairs of firms with
direct or indirect ties in existing alliance networks
are more likely to form future alliances (e.g.; Gulati
1995b, Walker et al. 1997, Chung et al. 2000), as are
firms with more extensive histories of alliance forma-
tion (e.g., Powell et al. 1996, Gulati and Gargiulo 1999).
Taken together, these dynamics suggest that alliance net-
works become ever more self-reproducing and central-
ized, as more and more dense webs of relationships are
developed among familiar and well-allied firms. Such a
characterization of network evolution may be the norm,
particularly in more mature industries, but does not help
us address questions of how networks might change
more dramatically.
Understanding substantive network change requires a

theory of network evolution that extends beyond these
well-accepted drivers of network evolution. Utilizing
insights from graph theory and network topology, we
identify two gaps in the typical studies demonstrating
network endogeneity. First, we employ the small-world
imagery of clusters of locally embedded firms connected

by a handful of “shortcuts” (Watts and Strogatz 1998,
Watts 1999). Here, although the formation of short-
cuts may be motivated by very different issues than
the majority of local, within-cluster ties, these drivers
of shortcuts can be masked by the drivers of the more
prevalent local ties. We follow the lead of Baum et al.
(2003) in separating out shortcuts as a subset of network
ties worthy of study in their own right. Indeed, short-
cut formation is one possible route to more significant
network change.
Another understudied aspect of network change is the

role of entry by new firms into the network. Studies
of “power-law” distributions in network topologies sug-
gest that new entrants preferentially connect to well-
connected actors in networks (Barabasi et al. 1999),
but most studies of social networks limit their scope to
actors that are members of the network throughout the
study period. Even small-world studies in our field typ-
ically limit their scope to the “main component”—the
largest group of actors that already are connected to each
other by at least one tie. By considering firms that are
outside the main component or not yet in the network
at all, we follow the lead of small-world theorists such
as Uzzi et al. (2002) and Schilling and Phelps (2007).

669



Rosenkopf and Padula: Investigating the Microstructure of Network Evolution
670 Organization Science 19(5), pp. 669–687, © 2008 INFORMS

Most studies of alliance network evolution are unable
to make substantive predictions about how firms that
are not advantaged by the current network structure are
able to break into these networks, because these firms
do not possess the alliance ties that are known to facili-
tate future alliance formation. Therefore, we investigate
how new entrants are attracted to partners both in and
out of the network, and also how established network
actors may choose to develop relationships both with
new entrants and with actors in distant clusters.
Our study focuses on a domain where industry

standards and network effects are prevalent, making
alliance formation plentiful. We examine the dynamics
of alliance networks in the cellular industry from 1993 to
2002. In established networks, we find that similar levels
of prominence among firms predict alliance formation
across local clusters. We also find that although firms
new to the network may enter through alliances with
prominent established actors, deals of this type are fre-
quently populated by more than one new-to-the-network
firm. Our results suggest that the emergence of new
entrants, particularly through multiparty deals, creates
new clusters that can be the source of more fundamental
network change.

2. Theory
This section develops a more comprehensive theory of
network evolution by acknowledging both endogenous
and exogenous drivers of partner selection. We first
review the two primary endogeneity mechanisms and
note the gaps unexplained by this perspective. Second,
we discuss how firms’ exploratory search may motivate
alliances with partners that would not be predicted by the
endogeneity perspective. Third, we develop hypotheses
about alliance formation among relatively unconnected
clusters and among new entrants to fill the endogeneity
gaps. Last, we consider how deals that admit uncon-
nected firms to the alliance network may differ from
deals among more familiar firms.

2.1. Network Endogeneity
Much extant research on network evolution highlights
the role of previous structures in driving new alliance
formation. Previous structures provide social cues about
the competencies and reliability of potential partners,
which reduce the search costs and risks of exposure to
opportunistic behavior (Gulati 1995a, Gulati and Singh
1998). Two well-accepted rules of attachment have been
emphasized as drivers of alliance formation: cohesive-
ness and prominence.

Cohesiveness suggests that pairs of firms with direct
or indirect ties in existing alliance networks are more
likely to form future alliances. Previous direct ties
between two firms provide a reliable channel through
which each partner can learn about the competences
and the reliability of the other (Gulati 1995b). By
providingunique information about partner capability

and trustworthiness, a history of cooperation between
two firms increases the likelihood that these firms will
form new alliances with each other in the future. Further-
more, indirect ties provide a vehicle to gather informa-
tion about potential partners through effective referrals
(Coleman 1988). Referrals provide governance benefits
that operate both ex ante, suggesting which potential
partners are reliable and trustworthy (Baker 1990, Gulati
1995b); and ex post, by disseminating information on
deviant behaviors (Raub and Weesie 1990). Therefore,
the extent to which potential partners’ networks overlap
with common partners affects the likelihood of alliance
formation between them (Ahuja 2000a, Chung et al.
2000).
A more structural indicator of the attractiveness of

a potential partner is its prominence in the alliance
network, because firms with more extensive histories
of alliance formation are more likely to form future
alliances. Differential levels of network involvement
among firms introduce and reinforce systemic reputa-
tional differences among them that extend beyond their
immediate circle of direct and indirect ties, affecting
their visibility and attractiveness (Podolny 1993, Han
1994, Podolny and Stuart 1995). Arguing that promi-
nence signals attractiveness, previous research argues
that firms attach preferentially to other prominent firms,
so that new alliances are more common between firms
that occupy central positions in the overall network
(Powell et al. 1996, Gulati and Gargiulo 1999). Further-
more, if prominence enhances the attractiveness of firms
to future partners, not only will central firms be likely to
seek other central partners, but they will also have little
incentive to accept peripheral players.
The demonstration of these endogenous determinants,

however, fails to address how firms that are either not
prominent, or lack substantial direct and indirect ties,
are able to participate in subsequent alliances. However,
we know from research on technological evolution and
innovation that network structures may undergo more
significant changes as technological discontinuities exert
pressures on existing relations (Rosenkopf and Tushman
1994, 1998) and firms engage in exploratory search
to enjoy the benefits of novel recombinant processes
(Rosenkopf and Almeida 2003). We argue that adjust-
ing the focus of network evolution studies to include
such “nonendogenous” ties will allow us to understand
sources of more significant network change rather than
focusing so strongly on how networks reproduce them-
selves. Therefore, we explore how the types of ties not
predicted by the network endogeneity perspective may
form. Whereas endogeneity studies tend to ignore or
minimize the formation of features such as shortcuts or
ties to new entrants, we make these features the focus
of our analysis.
First, shortcuts, by definition, are the less common ties

that span locally embedded clusters. However, our statis-
tical methods describe aggregate tendencies for alliance
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formation favoring endogenous dynamics at the expense
of the less common shortcut dynamics.1 The more recent
emphasis on small-world topology, however, suggests
that such shortcuts need to be examined independently
rather than in aggregation with other ties, because the
power of shortcuts is not in their prevalence but in their
scarcity and their valuable role in promoting efficiency
across the overall network. Thus, for example, Baum
et al. (2003) focused on shortcuts in investment bank-
ing syndicate networks and provided evidence that short-
cuts can be motivated by “control” and “insurgency”
rationales, which suggests that shortcuts can be formed
among both core firms and peripheral firms, respectively.
In this paper, we examine determinants of shortcut for-
mation rooted in existing network structure.
Second, endogeneity studies have traditionally exam-

ined mature, stable industries with little concern for
entry or exit. However, graph theorists have also empha-
sized how firms develop ties with even more distant,
unfamiliar firms—those that have not yet entered the net-
work (Barabasi et al. 1999). Indeed, recent studies have
considered how patterns of entry may shape network
structure (Powell et al. 2005, Uzzi et al. 2002). As such,
although the formation of shortcuts is one way in which
we might think about more radical changes to network
topology, an even stronger force in fast-paced industries
may be the entry of unconnected (or poorly connected)
firms to established networks. However, an endogene-
ity perspective is unable to make substantive predictions
about how firms that are not advantaged by the current
network structure are able to break into these networks.
Therefore, we also incorporate analyses of network entry
into our study.
To fully explore the dynamics of shortcuts and new

entry, we place several small-world attributes in the fore-
ground of our study. Whereas most small-world studies
limit their analyses to only the main component (the
largest set of actors that are connected by any path),
we emphasize the main component in both our the-
ory and our methods, but contrast dynamics within the
main component to those beyond the main component.
This distinction allows us to speak of firms “embedded”
within the main component forming alliances with each
other separately from firms that are not embedded in
the main component at a given time, but may enter the
main component subsequently through an alliance with
an embedded firm. We call the firms at risk of entering
the main component “nonembedded firms” or “poten-
tial new entrants.” Because embedded firms are able to
access technological knowledge circulating in the main
component (Powell et al. 1996), we theorize that differ-
ent dynamics will drive alliance formation among these
members than among nonembedded firms that do not yet
have access to this knowledge.
At the same time, following small-world approaches,

we also focus on the clustering of alliances within the

main component, separating the dynamics of alliance
formation within clusters from those for shortcuts across
clusters. Because shortcuts serve as bridges spanning
the structural holes across clusters (Burt 2005), their
use suggests access to less familiar contexts compared
to that of prospective partners residing within the same
cluster.
These twin emphases on embedded versus nonem-

bedded firms, and on shortcuts versus within-cluster
alliances, are key because they allow us to distinguish
what we call “semidistant” firms (already admitted to
the main component but residing in different clusters of
the main component) from “distant” ones (not yet admit-
ted to the main component). This more nuanced view of
distance generates the context in which firms undertake
exploratory search.

2.2. Exploratory Search and Distant Partners
Although the endogeneity perspective on network evo-
lution has traditionally emphasized the tendency of the
firms to search locally among familiar prospective part-
ners, other studies emphasize entrepreneurial behavior
and exploratory search of firms reaching out for more
distant partners (Burt 1992, 1998). Because shortcuts
connect locally embedded regions of relationships, they
can represent connections among less familiar partners,
in contrast to the more familiar firms within a local clus-
ter (Burt 2005). One rationale for distant search is that
brokerage benefits derive from sparse structures and net-
works rich in structural holes. A structural hole indicates
that the actors on either side of the hole have access
to different flows of information (Hargadon and Sutton
1997). Hence, developing positions that span the bridges
across different local communities enables access to
new, unique information (Hansen 1999, Beckman et al.
2004). This allows firms to accomplish novel recombi-
nant processes (Hargadon and Sutton 1997, Rosenkopf
and Almeida 2003, Verona et al. 2006) and supports their
strategic performance (McEvily and Zaheer 1999, Baum
et al. 2000). By exposing established firms to novel,
different flows of information, nonlocal search can be
particularly beneficial in fast-paced, exploration invest-
ment demanding industries (Rowley et al. 2000). Thus,
although within-cluster alliance formation is shaped by
trust among interconnected partners, it does not pro-
vide access to more unique knowledge.2 To access more
unique and innovative knowledge, firms must go beyond
local clusters, yet spanning structural holes implies col-
laborating with partners where no reservoir of trust has
been previously built through cohesive ties.
Whereas shortcuts within the main component are one

way in which distant partners may connect, a “more dis-
tant” pairing may be found between embedded firms and
potential new entrants to the network. Ahuja (2000a) has
shown that embedded firms may be willing to forsake
the trust benefits of cooperating with embedded, closely
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connected firms when the new entrants possess relevant
“technical capital” in the form of important inventions.
In fact, systematic exploration of new sources of techni-
cal knowledge may enable embedded firms to overcome
path dependence, reorienting their technological trajec-
tories through dynamic capabilities (Teece et al. 1997).
A consistent flow of new entrants may be expected to
take place when industries experience disruptive techno-
logical change (Rosenkopf and Tushman 1994). When
technological discontinuities emerge, new entrants pos-
sess new insights and relevant technical capital that may
enable embedded firms to reposition themselves techno-
logically and, consequently, maintain their competitive
leadership (Anderson and Tushman 1990). Moreover,
several case studies on high-tech industries show that
by admitting new entrants, embedded firms increase the
size of the community of firms adopting their technolog-
ical standard (e.g., Brandenburger 1995, Chandler 1997,
Collis and Pisano 2002), and are consequently more
likely to influence the selection of a dominant design
of an industry in their favor (Arthur 1989, Wade 1995,
Schilling 1998). Thus, alliances with new entrants sup-
port firm exploration and innovation, and are particularly
beneficial in technologically and competitively volatile
industries. Of course, although alliances made with firms
not yet embedded in the network increase the likelihood
of access to unique knowledge, this benefit comes at
the expense of trust built through cohesive ties, because
knowledge about firms outside the network is not avail-
able through indirect network channels.
Whether distant search is accomplished through short-

cuts or by admitting new entrants, these new relation-
ships with distant partners can provide an impetus for
network reform. These relationships develop new com-
binations of resources that can redefine the patterns of
interdependence among firms in the network. As a con-
sequence, the typical forms of network reproduction by
cohesion and prominence shift, reforming extant net-
work structure. As such, extending our current theories
of network evolution to accommodate shortcuts and new
entry patterns can enlarge our current understanding of
network dynamics.

2.3. How and Why Do Firms Partner Across
Clusters and Beyond the Main Component?

To consider selection of unfamiliar alliance partners,
we combine notions of exploratory search and endoge-
nous social cues. In other words, whereas the search for
exploratory benefits explains why embedded firms may
seek distant partners, extant structures play an impor-
tant role in predicting which distant prospective partners
collaborate. Given our distinction between semidistant
embedded firms residing in different clusters in the main
component and distant firms not embedded in the main
component, we begin by examining shortcut generation
within the main component and follow by examining
alliance formation with nonembedded firms.

2.3.1. Semidistant Shortcut Generation Within the
Main Component. Within the established alliance net-
work, firms in similar structural positions in the alliance
network are more likely to form subsequent partnerships
(Podolny 1994). Studies of interorganizational learning
(e.g., Powell et al. 1996) have suggested that explo-
ration activity is based on developing positions that
enable firms to keep pace with significant changes. To
do so requires being “active participants” at the leading
edge of the scientific and technological world (Cohen
and Levinthal 1990), which entails some resource-
sharing activities and mutual commitment that develop
trustworthiness and reliability of the partners (Ahuja
2000b). In addition, the partnerships where novel sci-
entific and technological cues are identified can pro-
vide fertile ground where these major developments may
be leveraged and further knowledge built through new
innovation projects (Powell et al. 1996, p. 120). As
promising new developments coming from exploratory
activities are more likely to be pushed further in the
same partnership context from which they have emerged,
collaborating on exploration with trustworthy partners
is paramount. Indeed, Burt (2005) has argued that the
social capital benefits accruing from brokerage require
some trust-enabling coordination mechanisms across
these distant partners.
In these circumstances, where the governance benefits

of density are not available, the question of whether an
unknown partner is trustworthy may be answered by the
partner’s record of prior alliance behavior. Firms with
extensive alliance histories have demonstrated trustwor-
thiness in these prior alliances, reassuring potential new
allies. Thus, prominent firms in an alliance network are
more likely to be selected by other firms undertaking
nonlocal search. This trust-based argument leads us to
hypothesize that prominent firms will tend to attach to
other prominent firms for shortcuts. However, because
exploration is especially important in fast-paced indus-
tries, less prominent firms are also compelled to carry
out distant search. They are less able to rely on repu-
tational benefits than are prominent firms, however, so
they can be expected to attach to other less prominent
network actors in their search for distant partners.
A status-based argument also predicts shortcut forma-

tion among structurally similar actors. Whereas ties with
higher-status actors enhance the prestige with which a
firm is viewed, ties with lower-status actors diminish it
(Podolny 1993). Ceteris paribus, any firm would prefer
to form an alliance with another firm of equal or higher
status to maintain or increase status. Thus, whereas
lower-status firms desire alliances with prominent firms
to accrue some of the esteem and prestige of prominent
affiliates, prominent firms will tend to attach preferen-
tially to other prominent firms to avoid any loss of sta-
tus. As a result, lower-status firms seeking to explore are
typically left with opportunities to ally only with firms
of equivalently low status.
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In each case, a structural homophily hypothesis
follows:

Hypothesis 1 (H1). The likelihood of a new shortcut
between two firms increases with the similarity in promi-
nence between those firms.

2.3.2. Distant Alliance Formation Between Em-
bedded and Nonembedded Firms. Next, we consider the
case when nonembedded firms can be admitted to the
network through alliances with embedded firms. Here,
we must consider the motivation of the embedded part-
ner as well as that of the nonembedded partner. Clearly,
the nonembedded partner seeks admission to the network
and would prefer embedded partners that are advan-
taged by the current network structure, but only under
certain circumstances would embedded firms choose
to form alliances with nonembedded firms. Although
nonembedded firms cannot confer status or demonstrate
trustworthiness to embedded firms, they may compen-
sate for these shortcomings by offering access to novel
technology.
Just like embedded firms, nonembedded firms prefer

trustworthiness and status. As we have discussed, when
selecting potential partners that are distant, firms may
rely on signals of trustworthiness. Lacking the gover-
nance benefits of dense cluster membership, nonembed-
ded firms will rely on the reputation benefits signaled
by network centrality and will be more likely to partner
with more prominent embedded firms. Of course, repu-
tation is likely to be correlated with other resources that
are also critical to nonembedded firms, such as special-
ized knowledge, capital, and complementary assets.
Furthermore, a status-based argument will lead to the

same prediction. As we have discussed, relationships
implicitly transfer status between parties. A high-status
organization increases the prestige and esteem of its
affiliates (Podolny 1993, Podolny and Phillips 1996).
Being a function of experience and ability to enter part-
nerships, status may be an indicator of the quality of a
firm, so that entering into partnerships with prominent
players implies a transfer of reliability and trustworthi-
ness to the connected partners. The reputation effects
provided by the connections with prominent partners are
particularly critical for a new entrant, because the first
connection to the network fixes an initial level of sta-
tus, which is likely to shape future connections. Fur-
thermore, partnerships with prominent incumbents can
act as endorsements that influence the perception of a
new entrant’s competence and trustworthiness. As an
example, Hsu (2004) finds that more experienced and
well-connected venture capitalists acquire early-stage
start-up equity at a 10%-14% discount. In other words,
entrepreneurial start-ups are willing “to pay for status”
while entering the financial network of VCs. Similarly,
new entrants to a network may sacrifice more favorable

contract terms to form alliances with high-status embed-
ded firms (Ahuja and Polidoro 2003).
Of course, whereas new entrants search for trustwor-

thy partners and wish to accrue status, it is less clear
why more prominent and higher-status embedded firms
might be willing to forsake the trust benefits of well-
connected embedded actors and/or wish to risk the loss
of status given by associating with an unknown firm.
Here we emphasize both the opportunity for established
firms to access new technology and the potential loss
of status that may ensue. Henderson and Clark (1990)
have argued that well-entrenched, dominant firms may
have neither the ability nor the motivation to intro-
duce architectural innovations, whereas less-entrenched
firms would be expected to search actively for opportu-
nities to introduce disruptive changes in product archi-
tecture in an industry. Madhavan et al. (1998) have
suggested that peripheral actors are more likely to
introduce competence-destroying change in an indus-
try because these radical innovations may offer firms
the opportunity to gain significant advantage over dom-
inant firms. Indeed, Ahuja (2000a) has demonstrated
that firms with low social capital can make attractive
alliance partners when they possess “important inven-
tions.” Consequently, despite the risks of collaborating
with unknown, low-status firms, embedded firms will do
so to get access to relevant insights and technical capi-
tal to reposition themselves in the competitive landscape
resulting from the innovation activities in the industry.
Stuart (1998) finds that prestigious firms are more likely
to seek “less crowded” areas of technological space
for new alliances. Furthermore, Zuckerman and Phillips
(2001) suggest that high-status actors are less suscep-
tible to status loss when they do not conform, which
implies that high-status actors may be able to accom-
plish exploration through distant partners at lower cost
than middle-status actors.
Thus, whereas network actors can be expected to

accomplish distant search by forming alliances to
peripheral firms—because they are more likely to pos-
sess the relevant technical capital to face the competitive
challenges brought by the innovation efforts—peripheral
firms in turn can be expected to attach preferentially
to more prominent network actors to take advantage
of status transfer and reputation benefits. Hence, this
line of reasoning would suggest that the attachment
bias underlying distant partner selection processes would
tend toward a social asymmetry hypothesis (Ahuja and
Polidoro 2003), so that, ceteris paribus, distant shortcuts
will occur that link nonembedded firms to prominent
ones.3�4

Hypothesis 2 (H2). The likelihood that a new
entrant attaches to an incumbent firm increases with the
prominence of the latter.
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2.4. Power of Numbers? Exploratory Alliances
Among Multiple Parties

In addition to investigating partner selection among dis-
tant and semidistant firms, we can also focus on a char-
acteristic of these alliances themselves. Little attention
has focused on the number of parties contracting in
an alliance, which we will term “deal size.” In fact,
although many alliances contain more than two par-
ties, most extant research treats these multiparty deals
solely as multiple, discrete, dyadic relationships.5 Mul-
tiparty deals may be expected to be particularly relevant
in alliance formation for exploration purposes, because
exploration-type activities may encompass high-risk
innovations and large investments (Teece et al. 1997).
Exploration activity is likely to be associated with

more disruptive change, which will require coordination
of complementary assets (Tripsas 1997) among a wider
array of actors. Cooperation to share the risks and costs
of innovation as well as cooperation based on knowl-
edge widespread across various different actors may be
accomplished more effectively by multiparty deals. The
role of larger deals is further heightened in systemic
industries. Because systemic technologies are based on
complex knowledge that cuts across firm boundaries
(Tushman and Rosenkopf 1992; Rosenkopf and Nerkar
1999, 2001), new alliance formation in these contexts
is likely to take account of the widespread nature of
complex knowledge and therefore is manifested in larger
deals.
In addition, large deals convey a surrogate for gov-

ernance benefits. Because ties across distant partners
lack the benefits of embeddedness in cohesive struc-
tures (Walker et al. 1997, Rowley et al. 2000, Baum
et al. 2003), their formation through larger deals creates
densely linked clusters around their members. In this
case, several participants mutually control their behav-
ior and contributions to the alliance, thereby providing
a relational context where trust and cooperation can be
effectively promoted. Even if this mechanism cannot
supplement ex ante referrals about potential partners’
qualities, it can provide ex post referrals and governance
benefits close to those experienced by firms embedded
in a dense structure.
Taken together, these arguments prompt us to pre-

dict that, ceteris paribus, exploration-type alliances
should be more commonly developed through multiparty
deals than through dyadic ones. Furthermore, because
exploration-type search is a matter of degree (Vicari
et al. 1996), the size of a deal may be positively associ-
ated with the degree to which the search may be char-
acterized as distant. Because we have argued above that
exploration may motivate alliances across clusters to
semidistant firms and outside the main component to dis-
tant firms, we would expect that the number of partners
in alliances would increase as these alliances span clus-
ter boundaries, and even more as these alliances reach
outside the main component:

Hypothesis 3 (H3). Among embedded firms, alliances
that generate shortcuts will have more partners than
alliances limited to within a single cluster.

Hypothesis 4 (H4). Alliances that attach nonembed-
ded firms to the main component will have more partners
than alliances limited to within the main component.

3. Method
We tested our hypotheses by examining U.S.-based
alliance formation in the cellular industry from 1993 to
2002. The transition from analog to digital platforms in
mobile communications technology was followed by the
development of a mass market that stimulated industry
growth. The early 1990s were characterized by tech-
nological ferment, with many variants of digital tech-
nologies competing to become the industry standard.
Concurrent with the establishment of code division mul-
tiple access (CDMA) technology in the United States
was the effort to develop protocols for the suite of per-
sonal communications services (PCS) enabling the oper-
ation of hand-held devices. Thus, the cellular industry
is a fertile ground for examining our questions dur-
ing this time frame because it exploits a particularly
dynamic context: Industry standards and network effects
are prevalent; technology is systemic; and entry and exit
are also plentiful.

3.1. Sample and Data
We tested our hypotheses using longitudinal data on
strategic alliances formed in the U.S. cellular com-
munication business from 1993 to 2002. The firms
in our sample include both service providers (primary
four-digit SIC code 4812) and manufacturers of cellu-
lar equipment (primary four-digit SIC code 3663). We
employed two rules to guide our construction of the
industry network. First, each alliance included at least
one participant that was a member of the target indus-
try (indicated by its primary four-digit SIC). Second, to
be included in the target industry network, each alliance
had to operate in that industry, as indicated by its pri-
mary SIC of activity. As per the first rule, we also
included alliance partners from beyond the target indus-
try because excluding them would eliminate our ability
to observe many of the indirect relationships between
industry members, thus biasing our measures of industry
connectivity. Coupling the first and second rules insures
that the industry network consists of alliance activities
focused on the designated industry.6

We collected alliance data from the Securities Data
Corporation (SDC) database, which includes all contrac-
tual arrangements in which two or more entities have
combined resources to form a new, mutually advanta-
geous business arrangement to achieve predetermined
objectives. This information comes from SEC filings and
their international counterparts, trade publications, wires,
and new sources. SDC provides information aboutboth
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alliance announcements and their realization and ter-
mination. Only alliances with realization dates were
recorded. Furthermore, when available, we used infor-
mation on alliance termination to remove that alliance
from subsequent calculations. However, because data on
alliance terminations are not as well documented as for-
mations, we also employed a five-year moving window
in the analysis of our network data, so that the alliances
in our database are limited to a five-year life span.7

We also used the SDC database to track corporate-
level changes such as mergers and acquisitions and cor-
rected our data accordingly. All firms that had divested
100% of their shares at the ultimate parent level were
removed from the data set after that event. In these
circumstances we also assumed that the alliances were
transferred from the seller to the acquirer, and the lat-
ter was added to the database if it was not already
included. Consequently, our network analyses have been
carried out, for any point in time, on working alliances.
Alliance formation data provided at the subsidiary level
were matched and recorded in our database at the parent
level. Data on firm size were collected from Compustat,
Worldscope, and Amadeus.
Basic characteristics of the yearly alliance networks

are displayed in Table 1. Both the number of firms active
in any alliance and the total number of ties among these
firms steadily increase over the study period. We identi-
fied the main component of the alliance network in each
year as the largest group of firms connected over any
path of alliance ties. Although the number of firms in

Table 1 Evolution of Network Connectivity and Small-World Characteristics of the Cellular Alliance Network

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

No. of active firms 16 31 40 72 88 95 101 112 118 118 118 120
No. of ties 14 28 38 104 126 139 146 153 163 169 171 173
No. of firms in MC1 �n� 9 12 25 56 71 74 82 89 93 94 94 94
No. of ties MC 10 16 29 94 115 123 132 140 145 153 155 156
No. of ties in MC 2�22 2�67 2�32 3�36 3�30 3�35 3�34 3�26 3�27 3�40 3�45 3�47

per firm �k�

Percent of active firms in MC 0�56 0�39 0�63 0�78 0�81 0�78 0�81 0�80 0�79 0�80 0�80 0�78
Percent of ties in MC 0�71 0�57 0�76 0�90 0�91 0�89 0�90 0�91 0�89 0�91 0�91 0�90
No. of firms in 3 3 5 18�67 17�75 18�5 20�5 22�25 23�25 23�5 23�5 23�5

MC/no. of firms
in second-biggest
component

Ca
2 0�410 0�487 0�351 0�596 0�623 0�625 0�649 0�669 0�662 0�596 0�593 0�601

La
2 2�194 2�197 3�575 3�714 3�761 3�730 3�807 3�840 3�901 3�779 3�745 3�736

Cr
3 0�247 0�222 0�093 0�060 0�046 0�045 0�041 0�037 0�035 0�036 0�037 0�037

Lr
3 2�752 2�533 3�825 3�324 3�574 3�559 3�653 3�800 3�827 3�709 3�672 3�653

Ca/Cr
4 1�661 2�192 3�782 9�942 13�421 13�800 13�927 18�273 18�834 16�457 16�172 16�290

La/Lr
4 0�797 0�867 0�982 1�117 1�052 1�048 1�042 1�011 1�019 1�019 1�020 1�023

SW5 2�083 2�527 3�851 8�897 12�754 13�168 15�281 18�082 18�476 16�151 15�855 15�929

�1�MC=main component.
�2�Actual network cluster coefficient (Ca) and path length (La).
�3�Random network cluster coefficient (Cr = k/n) and path length (Lr = ln�n�/ ln�k�), i.e., cluster coefficient and path length of a randomly

connected network of the same size/density as actual.
�4�Actual-to-random ratios: Cluster coefficient ratio (Ca/Cr) and path length ratio (La/Lr).
�5�Small-world connectivity index: (Ca/Cr)/(La/Lr).

the main component grows correspondingly until 2000,
its population stabilizes at this time. Nonetheless, the
total number of ties within the main component contin-
ues to increase. The main component ratios suggest that
by 1994, almost 80% of all firms with active alliances
are members of the main component, and approximately
90% of all alliances reside within this component. To
further suggest the dominance of the main component,
we also computed the ratio between the number of firms
in the main component and the number of firms in the
second-biggest component. By 1994, the main compo-
nent represents approximately 20 times more firms than
the second-largest component, reinforcing the sense that
there is little isolated clustering. All these percentages
appear to be reasonably stable and suggest that we cap-
ture most of the dynamics of alliance evolution by focus-
ing on new alliances within the main component as well
as on the pattern of entry into the main component.
The remaining rows summarize the small-world char-

acteristics of our network from 1991–2002.8 Consistent
with prior studies (Uzzi et al. 2002, Baum et al. 2003,
Davis et al. 2003), the small world emerges rapidly
(seen by the dramatic rise in the small-world coefficient
between 1993 and 1995) and demonstrates an endur-
ing structure. This emergence is driven by movement in
the clustering coefficient ratio, because the average path
length remains relatively consistent.
Figure 1 displays Pajek-generated visualizations of

four different years of alliance networks. In each graph,
the triangles represent the firms that entered the network
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Figure 1 The Evolution of Network Topology

1993 1994

1995 1998

Network entrant Incumbent New alliance Alliance persisting from previous year

AT&T

AT&T
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AT&T

Microsoft

Microsoft

Microsoft

Microsoft
McCaw Cell Comm.

Motorola

Motorola
Motorola

Motorola

Qualcomm

Qualcomm

Qualcomm

Qualcomm

Vodafone

Vodafone

Vodafone

that year and the circles represent the firms that were
members of the network before the year began (“incum-
bents”). Similarly, the distinction between alliances
formed that year and alliances previously formed is
shown by dotted lines versus solid lines.
Several characteristics of these networks and their

evolution are obvious in these figures. First, by examin-
ing the yearly patterns of linkages among actors, a main
component hosting the majority of alliances and actors
is immediately apparent. Outside the main component,
numerous dyadic and triadic deals among the minority
of firms that have not been admitted to the main compo-
nent can also be observed, where none of these nonem-
bedded firms appear to be involved in more than two
alliances. Second, by examining the actors and distin-
guishing new entrants from incumbents, we can observe
that firms new to the alliance network may enter in either
the main component or outside of the main component.
Third, we can also see that multiparty deals (fully con-
nected clusters) tend to draw many new entrants directly
into the main component.9

We can also observe network evolution across these
figures. We can observe the small world emerge by com-
paring the 1993 and 1994 networks. The 1994 network
grows by an influx of new entrants, and the alliances

among the new and established actors in the main
component are suggestive of clusters anchored around
five key firms: AT&T, Vodafone, Microsoft, Motorola,
and Qualcomm. Note also that these key firms tend to
demonstrate some shortcuts with each other, creating the
links across clusters. Examining the 1995 and 1998 net-
works, it is clear that the network topology established in
1994 remains consistent throughout the remainder of the
study period. Subsequent structures maintain the clus-
ters and shortcuts around these key firms, where new
entrants and new alliances tend to increase the size of
clusters and the number of links between actors in a
given cluster. As an example, consider the Qualcomm
cluster: In 1993, Qualcomm has not yet been admitted
to the main component. Upon its admission in 1994,
a small cluster has emerged, where Qualcomm appears
to be the hub linking the others in its cluster to the
main component. In both 1995 and 1998, an increase
in actors in the Qualcomm cluster is evident. Although
Qualcomm is clearly the central actor in the cluster with
the majority of linkages among cluster members (which
include both telecommunications (e.g., US Wireless) and
consumer electronics (e.g., Sony)), additional alliances
are forming among other actors in this cluster as well.
By 1998, a clear series of shortcuts between Qualcomm
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and other prominent hubs (AT&T, Microsoft, Motorola)
has emerged.
Analyzing alliance formation within the main com-

ponent required that we identify clusters in order to
discriminate the alliances embedded within the local
cohesive regions of relationships from the shortcuts. We
used CONCOR, a hierarchical clustering algorithm that
successively splits the firms into groups of firms based
on their structural equivalence (Breiger et al. 1975).
Numerous researchers (Nohria and Garcia-Pont 1991,
Walker et al. 1997) have used CONCOR or a variant of
this procedure to identify clusters. Because CONCOR
groups structurally equivalent firms, we insured that
the intracluster densities were greater that the inter-
cluster densities by merging clusters that violated this
relationship. Full detail on our procedure for cluster
identification is provided in Appendix 1. Once clusters
were determined, shortcuts were defined as the alliances
between firms belonging to different clusters.

3.2. Measures
To test our hypotheses, we constructed variables at
two different levels of analysis. For our hypotheses on
alliance formation (H1 and H2), we developed variables
using the dyad-year as the unit of analysis, whereas for
our hypotheses on deal size (H3 and H4), we developed
variables using the deal as the unit of analysis.

3.2.1. Dependent Variables. We constructed an
event history for each dyad spanning the years 1993 to
2002.10 For each dyad-year record, we coded a dichoto-
mous dependent variable, Alliance formation, indicating
whether the pair of firms formed an alliance in the given
year. Alliances reported among more than two firms are
represented as alliance formation dyads among each of
the firms included in the alliance. To avoid double count-
ing, we discarded reverse-ordered dyads.
We identified four different risk sets on which we run

these dyadic regressions. Three focus on alliance ties
formed among members of the main component in any
given year: ties between clusters (shortcuts), ties within
clusters, and all ties. We examine each of these three sets
to demonstrate the differences between the predictors
of shortcuts and within-cluster ties, and also to demon-
strate which of these effects are observable on the aggre-
gate set of ties in the main component. Our fourth risk
set examines alliance ties formed by firms that are not
members of the main component: These firms have the
potential to break into the main component by forming
alliances both with firms embedded in the main compo-
nent and with each other.11�12

The variable Deal size indicates the number of part-
ners represented in each alliance formed. Using the
deal as the level of analysis, we examine the determi-
nants of both the full risk set of deals as well as the
subset of embedded deals formed solely within the main
component.

3.2.2. Independent Variables. All of our dyadic
independent variables are derived from the alliance net-
work structure. To compute these network measures, we
constructed year-by-year adjacency matrices represent-
ing the relationships between the firms involved in each
of our risk sets. As per our choice to use a five-year mov-
ing window, each year included the cumulative alliances
that had been formed among industry panel members for
the previous five years.
In constructing these matrices, we also made some

choices about the treatment of different types of
alliances, the accumulation of multiple ties by the same
pairs of partners, and the past alliances that should be
included. Because our study is concerned with the struc-
tural pattern of interaction between firms, and the result-
ing topology of the overall network, we constructed
binary adjacency matrices for each year. In other words,
our indication of ties between firms is not sensitive to
the number of ties between the firms if multiple alliances
are active, and it is not sensitive to the “strength” of the
alliance as denoted by governance form. This is consis-
tent with a strict definition of topology as provided by
the small-world theoretical formulation.13 We computed
all the network measures using UCINET 6.0 (Borgatti
et al. 2002).

Structural Homophily. For embedded firm dyads, we
assessed the similarity of the two firms’ network posi-
tions. Structural homophily was constructed by calculat-
ing the ratio of each firm’s Bonacich (1987) eigenvector
measure of network centrality. Use of the Bonacich mea-
sure is consistent with prior efforts to capture the posi-
tion of an organization in a network (Mizruchi 1993;
Podolny 1993, 1994; Gulati and Gargiulo 1999). The
eigenvector measure accounts for both direct and indi-
rect firms’ ties, so that, using this index, the most cen-
tral organizations are those linked to many firms, which
are in turn linked to several other firms.14 We com-
puted the eigenvector measure of the network centrality
of each firm for each year and normalized them so that
the eigenvector score of the most central firm for any
year would equal one. To ascertain the similarity in the
centrality position of any pair of firms, we computed
the ratio of the smaller to the larger centrality score of
the two members of the dyad. This variable ranges from
zero to one, with higher scores representing higher sim-
ilarity in network position between the firms.

Incumbent Prominence. For dyads where at least one
member is not in the main component, we needed
to assess the network position of the embedded firm
only. Incumbent prominence represents the normalized
Bonacich (1987) eigenvector measure of network cen-
trality, as above, for the firm embedded in the main com-
ponent. If neither firm of the dyad is a member of the
main component, this score is set to zero.

Cross-Cluster and Nonembedded Deals. For deal-
level analyses, Cross-cluster deal is a binary variablethat
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is set to one for alliances among embedded firms that
have been formed with members of more than one clus-
ter as indicated by CONCOR. The variable is set to zero
if all the members of the embedded deal are members
of the same CONCOR cluster. Similarly, for the full set
of alliance deals, Nonembedded deal is a binary variable
that is set to one for alliances that include nonembedded
firms. The variable is set to zero if all the members of
the deal are already members of the main component.

3.2.3. Control Variables.

Time. To control for unobserved temporal factors such
as progressive legitimization or economic conditions that
may influence alliance formation or deal size, we con-
structed dummy variables for each year. We then com-
pared these results with those coming from using a
single variable Time, which ranges from zero to eight
(with the default year being 1993), thereby assuming lin-
earity in the effects of time. Because we observed no dif-
ferences in the results based on the alternative controls
for time, we chose to use the time trend for simplicity
of presentation.

Cluster Density. We also controlled for the density
of the cluster in which each embedded firm resides,
because Rowley et al. (2000) suggest that dense clusters
strengthen the tendency to explore with distant partners.
For each cluster, cluster density represents the actual
number of alliances formed within the cluster divided by
the number of all possible ties that can be formed within
the cluster—that is, �N �N −1��/2, where N is the num-
ber of firms belonging to the cluster. Normalizing the
within-cluster alliance count by dividing by the number
of possible alliances controls for the fact that the within-
cluster alliance count will vary greatly with the size of
the cluster.15 For embedded firm pairs, we constructed
a dyadic measure of Cluster density for each pair of
firms as the arithmetic mean of the cluster density score
of each member of the dyads. For nonembedded pairs,
we used the density of the embedded firm’s cluster. For
deal-based analyses, we average the cluster densities of
each embedded firm involved in the deal. If a dyad or a
deal included only nonembedded firms, cluster density
was set to zero.

Firm Size. Because alliance formation is positively
associated with firm size (Stuart 1998), we controlled for
the number of employees in each firm. We constructed
a dyadic measure for the Firm size variable as the arith-
metic mean of the firm’s size score for each member of
the dyad or the deal, depending on the unit of analysis.
This variable is logged due to high skew.

Horizontal Relationships. The propensity to form
alliances and their distribution across clusters and
shortcuts can also be influenced by industry-related
technological features. To control for these effects, we

coded the firms according to their main SIC code, so that
we could discriminate service providers from equipment
manufacturers from other firms whose main activity does
not fall in the target industry. We then created a dummy
variable called Horizontal dyad and coded 1 if both firms
in the dyad were in the same industry as shown by their
main SIC code (identifying the dyads at risk of forming
horizontal ties) and 0 if they were not (identifying the
cross-industry dyads). For deal-based analyses, Horizon-
tal deal was coded 1 if all firms in the deal were in the
same industry, and 0 otherwise.

Network Endogeneity. We also controlled for three
well-established measures of relational and structural
embeddedness associated with alliance formation in the
network endogeneity literature. First, Repeated ties rep-
resents the number of previous alliances formed between
the two firms in the previous five years. Because the
marginal value of any subsequent alliance for the forma-
tion of new alliances between any two firms is expected
to decrease as additional alliances are developed over
time between these firms, we also include the square
of this term. Second, to capture indirect ties in addi-
tion to direct ties, we computed the number of part-
ners shared by the two members of a dyad as a result
of their alliances in the previous five years. Following
Gulati (1995b), to capture the effect of indirect ties in
the absence of direct ties, we only allow the variable
Common ties to take this count as its value when the
members of the dyad have no prior direct ties with each
other during the previous five years. In other words,
when Repeated ties is greater than zero, Common ties
is set to zero. Third, another common measure in the
endogeneity literature is joint prominence. It is similar
to the structural homophily variable, but represents the
mean of the two normalized Bonacich centrality scores
rather than the ratio.

Cross-Cluster Dyad. Based on the results of net-
work partition provided by CONCOR, we constructed
a dummy variable to indicate when a pair of firms
belonged to the same cluster or different clusters within
the main component. Cross-cluster dyad �CC� is val-
ued 1 when each member of the dyad belongs to a dif-
ferent cluster, and 0 when both members of the dyad
are members of the same cluster. We also included an
interaction term between cross-cluster dyad and struc-
tural homophily (CC × Structural homophily) to assess
whether the effects of structural homophily differ with
the extent to which new alliances form within, rather
than across, clusters.

Main Component and New Entrant Prominence. We
included the count of the number of firms in the main
component during the year. Main component controls for
the extent of opportunities for new entrants to attach to
the main component. We also controlled for the promi-
nence of new entrants, because firms not embedded in
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the main component may still have formed alliances.
New entrant prominence measures the degree centrality
(count of active alliances) for potential new entrants to
the main component.

Average Previous Deal Size. For deal-based analyses,
we controlled for the aggregate experience that partners
would have in multiparty deals. To do so, we calculated
the average deal size for each partner’s active alliances.
For analyses limited to embedded firms, Average deal
size represents the average across all partners in the
deal. For analyses that span embedded firms and new
entrants, we separated the expertise across each group.
Here, Average incumbent deal size represents the aver-
age across all incumbents, while Average new entrant
deal size represents the average across all firms that are
not in the main component. If no firm has any deal expe-
rience, we set this variable to zero.

Table 2 Descriptive Statistics and Correlations for Dyads

Variable Mean S. D. Min. Max. 1 2 3 4 5 6 7 8 9

A. Among firms embedded in different clusters in the main component �N = 13�794�
1. Alliance formation 0�002 0�04 0 1 — — — — — — — — —
2. Time 5 2�2 0 8 −0�04 — — — — — — — —
3. Cluster density 0�40 0�15 0�19 0�72 −0�01 0�36 — — — — — — —
4. Firm size 9�46 1�82 1�65 13�06 0�03 −0�06 0�02 — — — — — —
5. Horizontal dyad 0�8 0�4 0 1 −0�01 0�00 −0�03 0�06 — — — — —
6. Repeated ties 0�02 0�17 0 3 0�12 −0�01 0�02 0�07 −0�1 — — — —
7. (Repeated ties)2 0�03 0�29 0 9 0�09 −0�02 0�01 0�07 −0�09 0�9 — — —
8. Common ties 0�11 0�34 0 5 0�05 0�03 0�23 0�35 −0�14 0�28 0�21 — —
9. Joint prominence 0�23 0�21 0�01 0�97 0�07 −0�13 0�2 0�29 −0�03 0�20 0�15 0�49 —

10. Structural homophily 0�19 0�19 0�001 0�99 0�08 −0�16 0�16 0�1 −0�03 0�08 0�06 0�2 0�69

B. Among firms embedded within the same cluster in the main component �N = 3�319�
1. Alliance formation 0�005 0�07 0 1 — — — — — — — — —
2. Time 5�20 2�17 0 8 −0�06 — — — — — — — —
3. Cluster density 0�32 0�19 0�15 1 −0�06 0�47 — — — — — — —
4. Firm size 9�78 1�82 2�41 13�07 −0�02 0�01 0�18 — — — — — —
5. Horizontal dyad 0�75 0�44 0 1 −0�00 0�02 0�08 0�14 — — — — —
6. Repeated ties 0�19 0�42 0 3 0�15 −0�11 −0�14 −0�04 0�03 — — — —
7. (Repeated ties)2 0�21 0�55 0 9 0�16 −0�09 −0�10 −0�004 0�001 0�92 — — —
8. Common ties 2�23 0�92 0 4 −0�05 0�06 0�16 0�04 0�04 −0�42 −0�34 — —
9. Joint prominence 0�27 0�26 0�001 0�93 0�00 0�09 0�42 0�31 0�03 0�29 0�29 0�12 —

10. Structural homophily 0�16 0�19 0�001 0�99 −0�02 0�11 0�31 0�25 −0�07 0�2 0�19 −0�09 0�65

C. Among all firms where at least one member of the dyad is not in the main component �N = 6�669�
1. Alliance formation 0�02 0�14 0 1 — — — — — — —
2. Time 2�31 2�07 0 8 −0�09 — — — — — —
3. Cluster density 0�24 0�18 0 0�5 −0�06 0�55 — — — — —
4. Firm size 9�04 1�85 2�90 12�97 −0�02 −0�14 −0�04 — — — —
5. Horizontal dyad 0�77 0�42 0 1 −0�01 −0�05 −0�05 0�06 — — —
6. Main component 54�59 20�27 25 82 −0�11 0�92 0�56 −0�12 −0�05 — —
7. New Entrant prominence 0�03 0�19 0 2 0�01 0�07 −0�01 0�09 0�07 0�06 —
8. Incumbent Prominence 0�18 0�2 0 1 0�04 0�12 0�26 0�18 −0�11 0�14 −0�01

Notes. Due to space limitations, we do not include the descriptive statistics and correlations over the overall risk set of embedded dyads,
including both within- and between-cluster dyads. Note that the descriptive statistics and the correlation structure for this larger risk set are
comparable to those resulting from the more restrictive risk sets A and B. Also note that in this omitted risk set, Cross-cluster dyad obtains
a high correlation rate only against Repeated ties (−0.27) and Common ties (−0.41), demonstrating that the traditional endogenous drivers
of alliance formation are negatively related to the distance across prospective partners. The interaction term CC × Structural homophily
is highly correlated with its terms (Cross-cluster dyad 0.37; Structural homophily 0.84) as well as with Joint prominence (0.49) because of
the high correlation of Structural homophily with Joint prominence.

Descriptive statistics and correlations for dyads and
deals are displayed in Tables 2 and 3.

3.3. Analyses
To explore the determinants of dyad-level alliance for-
mation, we regressed alliance formation in a given year
(1994–2002) on all network structure-based independent
variables and control variables for the previous year
(1993–2001). To estimate the effects of a covariate vec-
tor on the likelihood of a new alliance formation, we
used a population-averaged logistic regression model
(Stata 8.1) that accounts for unobserved heterogene-
ity, allowing for correlations across observations over
time.16

We ran several models over several risk sets to
explore the patterns of alliance formation among
embeddedfirms. These models demonstrate the changing
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Table 3 Descriptive Statistics and Correlations for Deals

Variable Mean S. D. Min. Max. 1 2 3 4 5 6 7 8

D. Among firms embedded in the main component �N = 47�
1. Deal size 2�07 0�33 2 4 — — — — — — —
2. Time 3�90 2�18 1 8 0�12 — — — — — —
3. Cluster density 0�37 0�20 0�15 1 0�03 0�05 — — — — —
4. Firm size 9�93 1�98 1�65 13�45 0�47 −0�02 −0�13 — — — —
5. Horizontal deal 0�38 0�49 0 1 −0�15 −0�31 −0�23 0�10 — — —
6. Average deal size 1�01 0�37 1 2�75 0�67 0�17 −0�04 0�50 −0�17 — —
7. Cross-cluster deal 0�58 0�50 0 1 0�16 0�37 0�37 −0�04 −0�48 0�20 —

E. Among all firms �N = 111�
1. Deal size 2�24 0�78 2 7 — — — — — — — —
2. Time 3�49 2�24 1 8 −0�02 — — — — — — —
3. Cluster density 0�33 0�22 0�05 1 0�07 0�04 — — — — — —
4. Firm size 9�18 2�05 1�05 13�45 0�31 −0�15 −0�12 — — — — —
5. Horizontal deal 0�43 0�50 0 1 0�10 −0�33 −0�18 0�09 — — — —
6. Main component 62�43 25�42 25 82 0�06 0�91 0�03 −0�17 −0�27 — — —
7. Average incumbent deal size 0�90 0�48 1 6 0�01 0�41 −0�04 0�01 −0�26 0�43 — —
8. Average new entrant deal size 0�04 0�20 0 1 −0�09 −0�25 −0�05 0�31 −0�09 −0�34 −0�43 —
9. Nonembedded deal 0�16 0�36 0 1 0�41 −0�40 0�20 0�33 0�21 −0�69 0�55 −0�45

effects of our independent variables when we examine
only shortcuts, only within-cluster ties, or all ties. Sub-
sequently, we examine alliance formation among dyads
where one or both of the members of the dyad is not
embedded in the main component.
To explore how structural considerations might pre-

dict deal size, we regressed deal size in a given year
(1994–2002) on all network structure-based indepen-
dent variables and control variables for the previous
year (1993–2001).17 Hence, we used a Poisson model
(Stata 8.1) that is consistent with the count nature of our
dependent variable.18

3.4. Results
Table 4 displays logistic estimates of the probability
that a dyad of firms will form an alliance in a given
year. Models 1A–3A examine shortcut formation among
firms embedded in the main component. Examining the
control variables (1A), we observe that most of the
drivers of alliance formation traditionally emphasized
by the endogeneity perspective have a role in predict-
ing shortcut formation as well. For example, Repeated
ties demonstrates a significant curvilinear relation with
shortcut formation. Likewise, the positive and signifi-
cant coefficient of Joint prominence demonstrates that
shortcuts tend to be more common among central firms.
In contrast to extant studies, however, our results show
that Common ties has no significant effect on new
alliance formation among firms residing in different
clusters. Firm size is positively and significantly related
to alliance formation, revealing that the propensity to
form shortcuts increases with the average size of the
firms. Time is negatively and significantly related to
alliance formation, suggesting that shortcut formation
decreases over time in the time span examined by the

study. All other control variables have no significant
effect on our dependent variable. These results are con-
sistent throughout the other two models (2A and 3A),
with one exception. Given the high correlation between
Joint prominence and Structural homophily, we sub-
stitute Structural homophily for Joint prominence in
Model 2A, and Structural homophily generates a sig-
nificant positive effect. When we include both variables
simultaneously in Model 3A, Structural homophily is
significant, whereas Joint prominence is not. Further-
more, the chi-squared values indicate that the Model 2A,
only including Structural homophily, is the preferred fit.
This demonstrates that shortcuts tend to be more com-
mon among firms with similar levels of centrality in the
network,19 confirming Hypothesis 1.
In contrast, Models 1B–3B explore how the same

independent variables affect alliance formation among
firms that reside within the same cluster, rather than
across clusters. Here, Repeated ties obtains a posi-
tive effect on alliance formation within clusters, but
the second-order term is not significant. As before,
Common ties have no effect on alliance formation.
Importantly, neither Joint prominence nor Structural
homophily affects alliance formation within clusters.
Because clusters host closer partners by definition, we
can expect that there would be less variation across
these observations with respect to the limited set of
within-cluster pairs. Indeed, Models 1C and 2C aggre-
gate the information from the prior two sets of regres-
sions (A and B) by demonstrating that the effect of
Structural homophily obtains across clusters only.
Models 1D–2D examine alliance formation among

new entrants and are therefore run on a risk set made
up of dyads between two new entrants or one embed-
ded firm and one new entrant, excluding dyads between
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Table 4 Logistic Estimates of Dyad-Level Alliance Formation

A. Among firms embedded B. Among firms embedded
in different clusters in the within the same cluster in the

main component �N = 13�794� main component �N = 3�319�

Independent variable Model 1A Model 2A Model 3A Model 1B Model 2B Model 3B

Structural homophily 2�94∗∗ 2�46∗∗ −2�29 −2�96
Time −0�39∗∗ −0�40∗∗ −0�40∗∗ −0�19 −0�19 −0�18
Cluster density −0�01 −0�01 −0�01 −0�03 −0�03 −0�02
Firm size 0�29∗ 0�41∗ 0�41∗ −0�08 −0�06 −0�09
Horizontal dyad −0�14 0�04 0�01 −0�09 −0�21 −0�21
Repeated ties 3�49∗∗ 3�57∗∗ 3�52∗∗ 4�47∗∗ 4�81∗ 4�81∗∗

(Repeated ties)2 −1�22∗ −1�20∗ −1�19∗ −0�81 −0�87 −0�88
Common ties 0�25 0�43 0�39 0�21 0�24 0�27
Joint prominence 2�48∗ 0�60 −0�09 0�71
Chi-square 100�85∗∗ 106�49∗∗ 104�91∗∗ 32�75∗∗ 34�48∗∗ 33�97∗∗

C. Among all firms embedded in the main D. Among dyads where at least one
component, both within the same cluster firm is not embedded in the main

and in different clusters �N = 17�113� component �N = 6�669�

Model 1C Model 2C Model 1D Model 2D

Structural homophily 1�66∗∗

Incumbent prominence 1�24∗

Time −0�28∗∗ −0�29∗∗ 0�17 −0�24
Cluster density −0�03 −0�02 0�06∗ 0�06∗

Firm size 0�03 0�12 −0�03 −0�04
Horizontal dyad 0�09 0�02 −0�57∗ −0�51∗

Repeated ties 2�97∗∗ 3�19∗∗ −0�03 −0�03
(Repeated ties)2 −0�72∗ −0�76∗

Common ties 0�51∗ 0�41
Cross-cluster (CC) dyad 0�38 −0�69
CC dyad × Structural homophily 4�93∗∗

Main component −0�05 −0�05
New entrant prominence 0�19 0�23
Chi-square 153�74∗∗ 160�46∗∗ 39�07∗∗ 43�49∗∗

∗p < 0�05; ∗∗p < 0�01.

two embedded firms. Our baseline Model 1D shows
that Cluster density obtains a positive, significant effect,
suggesting that incumbents embedded in more densely
connected clusters show a higher propensity to attach
to new entrants compared to those embedded in less
densely connected clusters. Moreover, Horizontal dyad
has a negative, significant effect, demonstrating that dis-
tant search in the form of attaching to new entrants is
more likely to occur amongst firms at different stages
of the value chain. All other control variables are
insignificant throughout. Turning to Model 2D, Incum-
bent prominence obtains a significant and positive effect
on the probability of alliance formation, supporting
Hypothesis 2.
Table 5 displays the Poisson estimates of deal size.

Models 1E–2E examine alliances formed among firms
embedded in the main component only. Neither of the
models has much explanatory power. Only Average deal
size has a significant effect on current deal size, and
Cross-cluster deals do not exhibit greater size. Thus, we
are unable to support Hypothesis 3: Among embedded

firms, there is no difference in the number of partners
among alliances within clusters and across clusters.
In Models 1F–2F we examine all alliances formed.

Again, the control variables are not particularly infor-
mative: Only Firm size obtains a significant effect.
However, with the inclusion of the Nonembedded deal
indicator, Model 2F demonstrates a significant fit, and a
significant positive effect of this indicator. Thus, nonem-
bedded deals are associated with a greater number of
partners than deals limited to within the main compo-
nent, supporting Hypothesis 4.

4. Discussion and Conclusions
Our study shifts the focus in studies of network evo-
lution from how networks stay the same to how net-
works might change more significantly. To do so, we
utilized several factors that have been underemphasized
in extant studies focusing on network endogeneity. Each
of these factors—the small-world topology, the entry of
new firms into preexisting networks, and the existence
of multiparty alliances—generates avenues by which
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Table 5 Poisson Estimates of Deal Size

E. Among firms embedded in F. Among all firms, both among firms embedded in the main
the main component �N = 47� component and among nonembedded firms �N = 111�

Independent variable Model 1E Model 2E Independent variable Model 1F Model 2F

Cross-cluster deal −0�13 Nonembedded deal 1�48∗∗

Time 0�05 0�04 Time −0�12 −0�13
Cluster density 0�18 0�19 Cluster density 0�31 0�24
Firm size 0�01 0�01 Firm size 0�06∗ 0�01
Horizontal deal 0�03 0�02 Horizontal deal 0�04 0�03
Average deal size 0�37∗ 0�37∗ Main component 0�01 0�01

Average incumbent deal size 0�07 0�09∗

Average new entrant deal size −0�27 −0�48

Pseudo R2 0�03 0�03 0�20 0�07∗

∗p < 0�05; ∗∗p < 0�01.

researchers and practitioners alike can observe differ-
ences in network structure and suggest several future
research directions.
Our findings underscore the well-accepted role of

endogenous determinants in network evolution. How-
ever, our twin emphases on the less prevalent shortcut
formation and on network entry highlight the reality that
incumbent firms occasionally seek to form alliances with
less familiar firms to access more unique knowledge,
and these alliances are the ones more likely to gener-
ate substantial changes in network structure. Our use of
small-world constructs like main components and clus-
ters allowed us to hypothesize and find determinants of
exploratory activity with these distant firms. Indeed, our
results, taken together, suggest that the notion of distance
in this topology is nuanced, where firms within clus-
ters are considered local, firms in different clusters but
still within the main component are considered semidis-
tant, and firms outside the main component are more
distant. Such a consideration of distance highlights the
trade-offs of increasing distance, where access to more
unique knowledge is available at the expense of decreas-
ing familiarity and the governance benefits generated by
trust.
More specifically, the small-world topology allowed

us to explore how alliance formation dynamics within
clusters might differ from those across clusters. Indeed,
our results focusing on the main component clearly
showed that a typical driver of endogeneity—structural
homophily—predicts shortcut formation, but not within-
cluster alliance formation. Thus, focusing on clusters
allows us to consider the motivation for alliance forma-
tion within clusters’ embedded subnetworks separately
from the motivation for alliance formation among less-
known partners that span separate clusters. Much more
research is needed that exploits this network structure.
A corollary benefit of the main component emphasis is

the opportunity to discriminate between alliance forma-
tion within the main component and alliance formation
that admits new firms into the main component. Because

many of the endogeneity-focused studies limit their anal-
yses to more mature industries and the set of firms that
operate in the industry for the entire span of the study,
the opportunity to explore more significant change in
networks is reduced. Indeed, 73% of the firms in the net-
work at the end of our study period joined the network
after our study period began. Thus, entry seems to be a
stronger source of network change than shortcut forma-
tion. Further, our results suggest that prominence plays a
major role in the creation of relationships between new
entrants and incumbents, and more research is required
that explores the mutuality of these relationships, along
the lines of Ahuja and Polidoro (2003).
In addition, by analyzing the main component entry

dynamics, we demonstrated that although prominence of
incumbents does suggest attractiveness for new entrants,
the deals that admit new entrants into the network are
frequently populated by more than two firms. Future
research must examine the motivation for these deals
that bring together multiple nonembedded firms with an
embedded partner. Is it that established firms are col-
lecting a set of capabilities to pursue future technol-
ogy/market combinations, or is it that the peripheral,
nonembedded firms define the opportunity and then
go in search of a partner with deep pockets? Further-
more, are such deals a natural outcome in many indus-
tries, or far more common in systemic industries like
wireless?
Beyond these conceptual issues, the analysis of

the multiparty alliances highlights the opportunity to
improve methodology for examining their implications.
Although we have learned much about network structure
from studies that utilize the dyad or the firm as the level
of analysis, our ability to integrate information at the
deal level or the cluster level in these sorts of analyses is
still quite limited. Studies that examine the antecedents
of multiparty alliances and distinguish them from those
of single-partner alliances can contribute a great deal
to research that has typically assumed that multiparty
alliances are simply collections of dyadic alliances.



Rosenkopf and Padula: Investigating the Microstructure of Network Evolution
Organization Science 19(5), pp. 669–687, © 2008 INFORMS 683

Our work also highlights how research streams
focused on social capital and on small worlds use-
fully intersect. Burt’s (2005) discussion of the interde-
pendence between learning and trust benefits is clearly
related to our effort to couple instrumental search goals
with reliance on social cues in alliance formation. Our
finding that different dynamics describe alliance forma-
tion within, between, and beyond local clusters sup-
ports his increasing emphasis on the complementarity
of brokerage and closure in studies of social capital.
Thus, the inclusion of small-world topology in theories
of network evolution can help us discern more beneficial
network structures. Although some initial studies have
demonstrated the value of small worlds (Schilling and
Phelps 2007, Uzzi and Spiro 2005), studies that share
our focus on the microstructure of networks can con-
tribute much more to our understanding of the interde-
pendence between brokerage and closure.
Finally, significant opportunities arise to connect stud-

ies of network evolution to both the technological tra-
jectories that provide context for alliance formation and
also to the movement of key individuals between firms.
As technological discontinuities provide the impetus for
network reformation, our approach allows researchers
to uncover the major sources of this network refor-
mation. Do networks reform because of the entry of
new firms? The development of new clusters? Increased
search for partners outside of established clusters? Or,
at the extreme, by the emergence and growth of a new
component that proves the undoing of the established
network? At the same time, to what extent can the
network-building activities of new entrants be facilitated
or constrained by the prior experiences of their exec-
utive teams? Future research must provide insight into
these areas, which can help researchers and practitioners
understand both endogenous and exogenous sources of
network change.
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Appendix
Because the determination of clusters is as much art as science,
here we set out the procedure we used to make this determi-
nation as systematic as possible. For our research purposes,
we needed to partition the actors within the main compo-
nent into more densely connected clusters of relationships.
To do so, we used CONCOR, a procedure that successively
partitions the firms into blocks of powers of 2 (2 blocks, 4
blocks, 8 blocks, 16 blocks, etc.) based on their structural
equivalence. Of course, because structural equivalence does
not require cohesion (Burt 1987), this procedure alone would
not guarantee that members within a block actually obtain the

Figure A.1 Potential Network Clusters for 1998 Suggested by
a Three-Partition CONCOR Procedure
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cohesiveness that we would expect from clusters. Therefore,
to determine the ultimate clusters for our analysis, we adhered
to the following procedure.
To assess whether a given partition of firms into clusters

effectively separates more cohesive blocks from each other, we
determined that any set of clusters admitted into our analyses
would demonstrate a higher density within each cluster than
between any two clusters. If this assumption was violated by
a suggested clustering via CONCOR, we merged the clusters
where between-cluster density exceeded within cluster density
until we met this criterion.
In CONCOR, there is no standard stopping rule about the

number of successive partitions to permit. Because our net-
work visualizations (for example, Figures 1(a)–(d)) appeared
to suggest three to six clusters, depending on the year, we
chose to allow three partitions for our analyses, which enabled

Figure A.2 Final 1998 Network Clusters, After Merging
Potential Clusters 1 and 2
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Table A.1 Density Matrix of the 1998 Potential Network
Clusters

Cluster 1 2 3 4 5 6 7 8

1 0.00 0.38 0.01 0.00 0.00 0.00 0.00 0.00
2 0.38 0.00 0.03 0.02 0.00 0.00 0.00 0.00
3 0.01 0.03 0.24 0.01 0.00 0.00 0.01 0.00
4 0.00 0.02 0.01 0.24 0.01 0.01 0.01 0.00
5 0.00 0.00 0.00 0.01 0.29 0.00 0.01 0.00
6 0.00 0.00 0.00 0.01 0.00 0.15 0.02 0.00
7 0.00 0.00 0.01 0.01 0.01 0.02 0.62 0.02
8 0.00 0.00 0.00 0.00 0.00 0.00 0.02 1.00

the identification of eight �2× 2× 2� potential clusters. Note
that alternative design choices for the number of partitions
were less suitable. Specifically, four partitions (yielding 16
cluster candidates) required many more merges, ultimately
revealing results essentially comparable to the three-partition
solution. More importantly, two partitions (yielding four clus-
ter candidates), although satisfying the criterion of greater
within-cluster density than across-cluster density, tended to
have less difference between the within-cluster and across-
cluster densities due to the aggregation of distinct subclusters
into this small set of potential clusters. Therefore, the three-
partition approach was used, ultimately resulting in five clus-
ters in 1993; eight clusters in 1994, and seven clusters in all
other years.
Figures A.1 and A.2 and Tables A.1 and A.2 depict our

cluster generation procedure, using 1998 data as an example.
Figure A.1 displays the results of a three-partition CONCOR20

analysis and Table A.1 displays the inter- and intracluster den-
sities. To satisfy the criterion above, the intracluster densities
(on the diagonal) must exceed the intercluster (off-diagonal)
densities. Although this is true for Clusters 3 through 8, Clus-
ters 1 and 2 each have zero density on the diagonal, suggest-
ing that the clusters represent structural equivalents that are
not cohesive with each other. Further examination of the rows
surrounding these zero diagonals suggest that these two clus-
ters should be merged together, because there are significant
linkages spanning these clusters, which would create cohesive-
ness within a merged cluster. Figure A.2 and Table A.2 depict
the revised clusters after this merge is completed. Now, all
diagonal (intracluster) densities exceed all off-diagonal (inter-
cluster) densities, so this is the seven-cluster solution we use
to discern shortcuts formed between clusters in the subsequent
year.

Table A.2 Density Matrix of the Final 1998 Network Clusters,
After Merging Clusters 1 and 2

Cluster 1+ 2 3 4 5 6 7 8

1+ 2 0.18 0.02 0.01 0.00 0.00 0.00 0.00
3 0.02 0.24 0.01 0.00 0.00 0.01 0.00
4 0.01 0.01 0.24 0.01 0.01 0.01 0.00
5 0.00 0.00 0.01 0.29 0.00 0.01 0.00
6 0.00 0.00 0.01 0.00 0.15 0.02 0.00
7 0.00 0.01 0.01 0.01 0.02 0.62 0.02
8 0.00 0.00 0.00 0.00 0.00 0.02 1.00

Endnotes
1Indeed, before the recent surge of small-world studies, Walker
et al. (1997) proposed that a firm’s motivation to generate
structural holes might lead to the formation of alliances with
unfamiliar partners. Despite this insight, their empirical results
did not demonstrate support for this hypothesis because the
majority of relationships were formed with familiar partners.
2Of course, Burt (2000) argues that the trust benefits of clo-
sure may be overrated, in that dense clusters may reinforce
the tendency of actors to echo “socially desirable” informa-
tion. Because alliance clusters in some cases represent a divi-
sion of labor, the threat of hold-up may exist, lessening trust
and increasing “echo.” Although this perspective generates a
slightly different slant on the full range of information shared
within clusters, it is still consistent with our larger view that
more unique information is available beyond local clusters.
3Another application of the social asymmetry hypothesis could
suggest that alliances between core and peripheral firms might
be more likely within the main component. We do not believe
that this is a likely phenomenon with regard to shortcuts in
the main component, as given by our arguments developing
Hypothesis 1. However, this does not preclude core-peripheral
alliances within clusters, which are not the focus of our anal-
ysis, and would likely be predicted by cohesiveness within
clusters. Our argument for prominent embedded firms finding
(peripheral) nonembedded firms attractive partners is spawned
by the cases where these nonembedded firms bring new-to-the-
network technology, consistent with the Ahuja and Polidoro
(2003) argument. Peripheral embedded firms are unlikely to
bring new-to-the-network technology.
4In an interesting analogy, Sorenson and Stuart (2001) find
that prominent venture capital firms are more likely to fund
spatially distant targets.
5Specifically, an alliance between one incumbent and two new
entrants is treated as three dyads: one each between the incum-
bent and the two new entrants, and another between the two
new entrants.
6Whereas our networks are generated via a focus on industry-
specific alliances, other authors have chosen to generate net-
works via a focus on firms participating in that industry (e.g.,
Gulati and Gargiulo 1999; Ahuja 2000a, b). Given our need
to understand the broader network topology and to iden-
tify new entrants, firm-generated networks were less likely to
reveal these phenomena. A similar approach has been used by
Schilling and Phelps (2007).
7The choice of a five-year window is consistent with extant
alliance studies (e.g., Gulati and Gargiulo 1999, Stuart 2000)
and conforms to Kogut’s (1988) finding that the normal life
span of most alliances is no more than five years. Schilling
and Phelps (2007), in contrast, use a three-year window for
their alliance network study. In our data, for the alliances with
terminations reported in SDC Platinum (14 of 111), the mean
length of the terminated deal is 2.5 years, with a standard
deviation of three years. We ran our analyses with three-year
windows and found that our results are robust to the selection
of either time frame.
8Following Watts and Strogatz (1998) and Watts (1999), we
look for the presence or absence of a small world by compar-
ing the actual network’s clustering coefficient (Ca) and path
length (La) to the clustering coefficient (Cr) and path length
(Lr) of a randomly connected network of the same size and
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density. Formally, a small world is said to exist if Ca is at least
twice as large as Cr while La is approximately the same as Lr
(Newman et al. 2001). For a random network the clustering
coefficient is calculated as k/n and average path length can
be computed as ln�n�/ ln�k�, where k is the average number
of degrees per node and n is the number of nodes. Thus, the
small world diverges from a random network by exhibiting
high clustering while still maintaining short path lengths.
9Several multiparty deals are pictured in our figures. First,
Unitel was formed in 1994 as a joint venture between net-
work incumbent BellSouth and six network entrants (ENI,
Fiat, Fininvest, Premafin, Millicom, and Vodafone) to bid for a
mobile telephone network license. This deal is represented by
the cluster of seven firms in the lower-left quadrant. Second,
also in 1994 (seen in the upper-right quadrant), the Wireless
Cable Digital Alliance is a consortium of six new entrants
(American Telecasting, Andrew, California Amplifier, EMCEE
Broadcast Product, Microwave Filter, and Zenith Electronics)
to jointly develop digital technologies for delivery of digital
video programming and other services. Third, in 1995, RPG
Cellular Services was formed as a joint venture between Voda-
fone and three new network entrants (Itochu, RPG, and Air-
Touch Communications) to provide cellular telephone services
in India (seen in the lower-left quadrant). Finally, in 1998, an
alliance was formed between Motorola and three new entrants
(Netscape, Nextel, and Unwired Planet) to provide a wireless
telephone package combining voice, data, and Internet services
in the United States (seen in the lower-right quadrant).
10Because the determination of our variables relies on the
identification of the main component, we begin our statistical
analyses during the first year in which a main component is
evident.
11In analyses not reported here, we also split this risk set into
the subset of dyads with one firm already embedded in the
main component and the subset of dyads with neither firm
embedded. Results were comparable, so we only report the
results for the combined set of dyads.
12Ties among nonembedded dyads may arise as a function of
multiparty deals that include more than one nonembedded firm
as well as deals limited to nonembedded firms.
13The use of binary (rather than valued) adjacency matrices
may raise the concern that we overemphasize structural con-
siderations at the expense of relational ones. Our method-
ological choice is motivated by our desire to incorporate the
small-world methodological assumptions, which are primarily
structural (Watts and Strogatz 1998, Watts 1999). However, to
incorporate relational considerations, we include count mea-
sures for cohesiveness controls, which are discussed later in
this section.
14To compute the Bonacich (1987) index, we tested multiple
values of the weighting factor Beta, which denotes the extent
to which indirect ties should affect the focal firm’s centrality.
We report results for the Beta parameter set at the three-quarter
of the inverse of absolute value (or modulus) of the largest
eigenvalue, which is consistent with previous research (e.g.,
Podolny 1993). However, our results are robust to a range of
positive values of Beta. They are also robust when Beta is set
to zero, which essentially reduces the Bonacich measure to
one of degree centrality.
It is worth noting that two firms with equivalent Bonacich

centrality with Beta set to 0.75 may not experience the exact

same structure, because one could have a smaller number of
higher-status partners whereas the other could have a larger
number of lower-status partners. Fortunately, the convergence
of the results with Beta set to both 0.75 and 0 strengthens
our claim of structural homophily. We thank an anonymous
reviewer for pointing this out.
15We considered using a variable representing cluster size (the
number of firms in the cluster) as well. Clearly, cluster density
is a function of cluster size N , and the two variables are cor-
related at −0.34. Accordingly, alternative specifications of our
model with cluster size in place of cluster density, as well as
both cluster size and cluster density together, did not add any
explanatory power to our models; cluster density alone is the
preferred predictor. Another specification with cluster size and
number of ties in the cluster (instead of cluster density) again
did not exceed the predictive power of cluster density alone.
16Our decision to employ a population-averaged model rather
than a random or fixed-effects model is based on the follow-
ing considerations. Recent studies of alliance formation within
dyads (Gulati 1995b, Stuart 1998, Rosenkopf et al. 2001) have
used random effects rather than fixed effects because of the
biases inherent in fixed effects over short time horizons and
because of the presence of time-invariant predictors for which
fixed effects do not provide any coefficient estimates. How-
ever, random-effects models are based on the assumption that
the random components are independent from the time-varying
predictors, a restrictive condition that seems incorrect in our
research design and that would consequently lead to biased
estimates if employed to our case. Because the population-
averaged approach makes no explicit assumption about the
random component in the regression model, it relaxes the
random-effects models restrictions by allowing for any possi-
ble correlations between random component and time-varying
predictors. At the same time, it can accommodate short time
frames and time-invariant predictors. Consequently, in our case
the population-averaged approach is the preferred way to obtain
estimates adjusted to account for the correlation across obser-
vations through time.
17Although firm fixed effects might be desirable, our limited
number of observations for the deal-based analyses preclude
their inclusion.
18Although the dependent variable does not suffer from
overdispersion, we tested negative binomial models to insure
there was no improvement in fit over our Poisson models.
19The Joint prominence result suggests that the alliance forma-
tion among firms with similar levels of centrality is generated
by more prominent firms forming alliances with each other than
by more peripheral firms forming alliances with each other.
20Visual representations of our 1998 network clusters were
obtained using Pajek 1.19 (de Nooy et al. 2005).
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