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Much research in strategic entrepreneurship has focused on the consequences of network 
structure for fi rm performance. Despite this emphasis, little is known about variation in 
network structure across industries, or about the antecedents of this variation. In a com-
parative study of alliance networks in 32 industries, we demonstrate substantial variety in 
network structure, and develop a typology of network structures. We then endeavor to explain 
this variation by focusing on dimensions of the products and technologies that characterize 
these industries—such as technological uncertainty and dynamism, product modularity, and 
architectural control—and associating them with underlying characteristics of network struc-
ture. We conclude with a discussion of implications of our fi ndings for research in strategic 
entrepreneurship. Copyright © 2008 Strategic Management Society.

INTRODUCTION

Recent research has demonstrated that interfi rm 
network structure can signifi cantly infl uence fi rm-
level performance outcomes such as growth (e.g., 
Powell et al., 1996), innovation (e.g., Ahuja, 2000a; 
Schilling and Phelps, 2007), and access to venture 
capital (Sorenson and Stuart, 2001). Some of the 
most prominent mechanisms by which an interfi rm 
network infl uences fi rm outcomes include shaping 
the fl ow of information and other resources between 
connected fi rms, providing signals of fi rm quality, 
and enabling reciprocity norms through shared 
third-party ties (Ahuja, 2000a; Gulati and Gargiulo, 
1999; Owen-Smith and Powell, 2004; Schilling and 

Phelps, 2007; Stuart, 2000; Uzzi, 1997). However, 
despite mounting evidence of the importance of 
alliance network structures, neither the variation in 
these structures nor the antecedents of this variation 
are well understood. There is very little research 
documenting systematic differences in alliance 
network structure, presumably because of the dif-
fi culty in doing so.1 Only a few databases exist that 
track alliances for multiple industries in a consistent 
fashion, and harvesting the data from these alliances 
in a way that permits accurate network analysis is a 
nontrivial task.

Similarly, most extant studies addressing the ques-
tion of where interorganizational alliance networks 
come from either limit their scope to a single or few 
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1 Some notable exceptions include Schilling and Phelps (2007), 
who analyze how the characteristics of 11 industry alliance 
networks affect patenting activity, and Verspagen and Duysters 
(2004), who compare the network structure of the chemicals 
and food and electrical equipment industries.
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industries (e.g., Baum, Shipilov, and Rowley, 2003; 
Stuart, Ozdemir, and Ding, 2007), or to explaining the 
formation of dyadic alliances rather than the overall 
network (e.g., Gulati, 1999; Stuart, 1998). Here we 
have seen that alliance formations may be predicted 
by prior alliance activity (Powell et al., 1996; Walker, 
Kogut, and Shan, 1997; Gulati, 1995)—by network 
ties in other contexts such as technical committees 
(Rosenkopf, Metiu, and George, 2001), director 
interlocks (Gulati and Westphal, 1999), patent-
related technology landscapes (Mowery, Oxley, and 
Silverman, 1998; Stuart, 1998)—and by technologi-
cal capabilities (Gulati and Gargiulo, 1999; Ahuja, 
2000b). Again, this activity has been fruitful, but 
it does not address how these alliances aggregate 
into an overall structure, how these structures vary, 
or what broader industry characteristics may shape 
these alliance decisions.

To address these issues, we fi rst assess whether 
there are signifi cant and systematic differences in 
alliance network structure across different industries 
by developing and analyzing 32 industry alliance 
networks. We take care to construct and analyze 
the networks by consistent means, permitting us to 
compare these networks on such dimensions as size, 
connectivity, centralization, small-world properties, 
and others. We are then able to compare alliance 
network structure to other industry features, such as 
number of publicly held fi rms, change in total factor 
productivity, research and development intensity, 
separability of innovation activities, and concentra-
tion of architectural control. We combine this induc-
tive approach with theoretical reasoning to develop a 
typology of alliance network structure, and propose 
a set of industry factors that shape network structure. 
We close by considering the implications of these 
fi ndings for future research.

COMPARING NETWORK 
STRUCTURES

For the inductive portion of our study, we began 
by constructing a sample of industry alliance net-
works. From the full list of three-digit (1987 SIC) 
manufacturing industries, we excluded consum-
ables (food and beverage and tobacco) and those 
industries that are ‘not elsewhere classifi ed’ desig-
nations (i.e., catchall categories for miscellaneous 
products that are not otherwise classifi able under 
the SIC system), leaving 103 candidate industries 

for our study. For these industries, strategy and 
entrepreneurship scholars assessed the levels of 
technology-focused characteristics, such as product 
modularity, value chain separability, proprietary 
standards, and architectural control. Using these 
assessments, we selected a total of 32 industries 
that demonstrated varying levels of these charac-
teristics.

For our sample, alliance data were gathered using 
Thomson’s SDC Platinum database. The SDC data 
have been used in a number of empirical studies on 
strategic alliances (e.g., Anand and Khanna, 2000; 
Schilling and Steensma, 2001; Sampson, 2004).2 For 
each industry, we gathered all alliances announced 
between 2001 and 2003 that included at least one 
fi rm whose primary SIC code (the four-digit SIC 
code in which the fi rm generates the largest portion 
of its revenues) matched the industry. Both public 
and private fi rms were included.

Alliance relationships typically last for more 
than a year, but alliance termination dates are rarely 
reported. This required us to make an assumption 
about how long the alliances lasted. We took a con-
servative approach and assumed that alliance rela-
tionships would last for three years, consistent with 
recent empirical work on the average duration of 
alliances (Phelps, 2003). Other research has taken 
a similar approach, using windows ranging from 
one to fi ve years (e.g., Bae and Gargiulo, 2003; 
Gulati and Gargiulo, 1999; Stuart, 2000). Thus, we 
create the alliance networks based on a three-year 
window spanning 2001 to 2003. Each network was 

2 Like all other large alliance databases (e.g., MERIT-CATI, 
RECAP, Bioscan), SDC is incomplete in that it does not 
capture all announced alliances. However, it has been demon-
strated that despite this incompleteness, the pattern of alliance 
activity across the major databases is remarkably symmetric. 
Furthermore, alliance network structure is highly resilient to 
this incompleteness, because the alliance databases (with the 
exception of Bioscan) are sampling on the links (the alliances) 
rather than the nodes (the organizations). This means that the 
likelihood of an organization making it into the sample is 
directly related to the number of alliances it publicly announces, 
reducing the likelihood of an important hub being overlooked. 
Furthermore, an organization’s size and prominence is directly 
related to both the number of alliances it is likely to have and 
the amount of press attention it is likely to receive, further 
reducing the likelihood of a major hub being overlooked, at 
least in the datasets that consider all forms of organizations 
(Schilling, 2007). This means that while network and main 
component size are undoubtedly underestimated, dimensions 
such as relative degree, centralization, clustering, etc., are fairly 
reliable so long as the sampling methodology is consistent 
across the networks being compared.
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constructed as a binary adjacency matrix.3 Since we 
were concerned with whether a path existed from 
one fi rm to another and not with the effect of multi-
plex relationships, multiple alliance announcements 
between the same pair of fi rms in any time window 
were treated as only one link. Alliance relationships 
are considered to be bidirectional, resulting in an 
undirected unipartite graph (Newman, Strogatz, and 
Watts, 2001). Ucinet 6.23, a leading social network 
analysis software package, was used to obtain 
network structure measures on each of these net-
works (Borgatti, Everett, and Freeman, 2002), and 
Netdraw was used to create graphical pictures of the 
networks (Borgatti, 2002).

Table 1 lists relevant statistics for all 32 of our 
networks. The fi rst two measures—change in total 
factor productivity and research and development 
intensity—capture the technological dynamism of 
the industry. The former—change in total factor pro-
ductivity4—examines whether the rate of output from 
a given quantity of inputs has changed in an industry 
over time. Historically, total factor productivity has 
increased signifi cantly across all industries, and part 
of this increase is typically imputed to be due to 
technological progress that enables factors of 

production to be more effective or effi cient (Crafts, 
1996; Griliches, 1990; Terleckyj, 1980). This 
measure is available at the four-digit SIC level 
from the Bertelsman-Gray database available at the 
National Bureau of Economic Research, and we used 
a weighted average method to aggregate the data 
up to the three-digit level for the purposes of our 
study. The latter measure, research and development 
intensity5, has been repeatedly associated with the 
importance of innovation and technological change 
in an industry. To measure it, we used industry-level 
research and development expenditures divided by 
industry-level sales, both obtained from Compustat.

The next measure, average separability of inno-
vation activities, captures the degree to which the 
industry is considered to be characterized by innova-
tion activities that can be separated across multiple 
fi rms (as, for example, when the industry is character-
ized by interfi rm product modularity). To create this 
measure, we developed two rating instruments. First, 
we created a list of the 103 manufacturing industries 
described previously. The two researchers indepen-
dently rated every industry as high in separability (1), 
low in separability (−1), or neither (0). The resulting 
set of ratings exhibited a coeffi cient alpha of 0.71, 
suggesting very high interrater reliability (Nunnally, 
1978). Thus, we aggregated these scores across the 
two researchers to create a single index ranging from 
−2 to 2. Second, we gave copies of the list to a set of 
13 scholars in strategy and entrepreneurship, asking 
them to identify the 10 they felt exhibited the highest 
levels of separability of innovation activities.6 These 

3 A binary adjacency matrix is a square matrix with nodes 
(e.g., fi rms) as rows and columns. The entries in the adjacency 
matrix, xij, indicate which pairs of nodes are adjacent (i.e., 
have a relationship). In a binary matrix, a value of 1 indicates 
the presence of a relationship between nodes i and j, while a 0 
indicates no relationship.
4 Total factor productivity (TFP) growth is a version of the 
Solow residual (Solow, 1957). A series of studies of eco-
nomic growth conducted at the National Bureau of Economic 
Research attracted attention to the role of technological change 
when it was shown that the historic rate of economic growth 
in GDP could not be accounted for entirely by growth in labor 
and capital inputs. Though many researchers have attempted 
to explain this residual away in terms of measurement error, 
inaccurate price defl ation, or labor improvement, in each case 
the additional variables were unable to eliminate this residual 
growth component (Terleckyj, 1980). Gradually a consensus 
emerged that despite idiosyncratic measurement effects, the 
residual largely captures technological change (Crafts, 1996; 
Terleckyj, 1980). Though this residual is primarily used at 
the national level, a number of researchers have used TFP 
growth at the industry level to model the relationship between 
such productivity growth and other variables (e.g., Griliches 
and Lichtenberg, 1983; Jorgenson, 1984; Siegel and Griliches, 
1991). The TFP growth index is calculated as the growth rate 
of output (real shipments) minus the revenue-share-weighted 
average of the growth rates of capital, production worker hours, 
non-production workers, non-energy materials and energy. The 
TFP growth measure used here is the percent average com-
pound growth rate from 2000–2005 for each industry (based 
on two-digit SIC) as obtained from the Bureau of Economic 
Analysis. This measure has been used in a number of other 
studies to capture the rate of industry-level technological 
change (e.g., Nelson, 1988; Sterlacchini, 1989).

5 Industry-level research and development intensity (R&D 
intensity) captures the degree to which fi rms in an industry 
focus on innovation activities and is an oft-cited predictor of 
technological innovation rates (e.g., Godoe, 2000; Mariani, 
2004). For the industry-level measure used here, we gathered 
R&D expenditure and sales data on every publicly held fi rm 
in each of the industries. For each industry, we divided the 
average R&D expenditures by the average sales. It was impor-
tant to calculate the averages for R&D expenditures and sales 
prior to dividing the former by the latter to prevent unusually 
large outliers from biasing the measure. This is because if R&D 
intensity is calculated at the fi rm level and then averaged, the 
resulting number can be skewed upward dramatically by fi rms 
that have spent on R&D but not yet earned revenues.
6 In the survey, respondents were asked to nominate the 10 
industries with the highest level of either a) ‘.  .  .  modularity 
within the products that characterize the industry. Modularity 
is defi ned as the degree to which a product’s components may 
be separated and recombined’, or b) ‘.  .  .  separability of innova-
tion activities along the value chain (product design, process 
design, manufacturing, marketing, etc.) for the products that 
characterize the industry. Separability is defi ned as the degree 
to which these activities can be distributed among multiple 
actors/facilities.
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nominations were then aggregated into a count for 
each industry (industries that received no nomina-
tions received a zero). These scores were compared 
to the index created by the researchers, yielding a 
coeffi cient alpha of 0.76—again suggesting very high 
interrater reliability. Therefore, we normalized the 
count and aggregated it with the researcher index to 
create a single composite average separability score. 
Not surprisingly, computers and household audio 
and video equipment, which are often used as arche-
typal examples of interfi rm product modularity, both 
scored very highly on this separability measure.

We performed a similar procedure for the next 
measure, average architectural control. This measure 
attempts to capture when a few fi rms have signifi -
cant power over the technology design or component 
compatibility within an industry. To measure this, 
we again used a researcher rating index (the coef-
fi cient alpha between ratings by the two researchers 
was 0.75), and nominations7 from the set of scholars 
(the coeffi cient alpha between the scholar count and 
the researcher index was 0.64). We again normal-
ized the latter and aggregated it with the former 
to create a single measure of average architectural 
control. The three industries that scored highest in 
terms of architectural control were guided missiles, 
aircraft and parts, and engines and turbines—all 
industries that exhibit very high minimum effi cient 
scale and may necessitate large players for several 
stages of product development, manufacturing, or 
system integration.

The remaining measures are network statistics. 
The measures indicate that there are wide differ-
ences in the size and structure of alliance networks 
across the industries. The fi rst measure—nodes—is 
a count of all of the players implicated in the indus-
try alliance network, while the second—industry 
fi rms—is a count of the fi rms in the network for 
whom that industry is their primary SIC. As shown, 
our networks range in size from a single industry 
fi rm engaged in a single alliance with a nonindustry 
fi rm (e.g., wood buildings and homes) to networks 

with hundreds of industry fi rms engaged in alliances 
both within and beyond the industry. The next two 
measures, number of alliances per industry fi rm and 
alliance participation rate, both tap into the emphasis 
on alliance activity in the industry. The fi rst is the 
average number of alliances individual industry fi rms 
engage in, measured as a direct count of the number 
of alliances engaged in by each industry fi rm, aver-
aged over the industry. The second is a measure of 
the relative rate of participation in alliances by fi rms 
in the industry, measured as the number of industry 
fi rms engaged in alliances divided by the number 
of fi rms in that industry worldwide, as reported 
by Compustat Global.8 The average number of alli-
ances ranges from a low of 1.00 to a high of 3.75 
(engines and turbines), and participation ranges 
from a low of 0.05 to a high of 2.60 (for guided 
missiles, where more fi rms in the industry partici-
pate in alliances than there are publicly held fi rms 
in the industry).

Network centralization captures the degree to 
which some fi rms have many more alliances than 
others in the industry, scaled by the maximum value 
this measure can take on. It is measured as:

 

c c

Max c c
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i

max
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−( )( )

∑
∑

where cmax is the maximum degree centrality of any 
node in the network, and ci is the degree centrality 
of node i. This measure can take on a value of 0.00 
(where all nodes have the same degree centrality) 
to 100 percent for a star graph where one node is 
connected to all the others nodes, but those nodes 
are connected only to the center of the star. In our 
networks, this measure ranges from 0.00 to values 
as high as 33.26 percent (for guided missiles) and 
40 percent (for the logging industry). Both of these 
high centralization industries are depicted in Figure 
1. The graphical visualization of the guided missile 
network is particularly exquisite, showing four large 
cliques connected by two main hubs (Lockheed 
Martin and Thales SA).

7 In the survey, respondents were asked to nominate the 10 
industries with either a) ‘.  .  .  the highest concentration of archi-
tectural control among the fi rms in the industry. Architectural 
control refers to the ability of a fi rm(s) to defi ne specifi cations 
for both the individual subsystems of a product as well as the 
integration of these subsystems to form the end product,’ or 
b) ‘.  .  .  the highest level of proprietary technological standards 
governing the products that characterize the industry. Propri-
etary technological standards refer to interface specifi cations 
that are company owned.’

8 Since there is no defi nitive count of the number of private 
and public fi rms that compete in an industry worldwide, we 
divided the number of industry fi rms engaged in alliances by 
the number of publicly held fi rms in the industry worldwide 
as reported by Compustat Global. While the latter decidedly 
understates the size of the industry by counting only publicly 
held fi rms, it provides some scaling for industry size that at 
least enables us to get a sense of relative participation rates.
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The next three measures pertain to small-world 
properties. The fi rst, harmonic mean path length, 
measures path length in a disconnected network 
by scaling the infi nite distances (those between 
nodes for which there exists no path) to the size 
of the network (Newman, 2000).9 The second, the 
weighted overall clustering coeffi cient, represents 
the percentage of a fi rm’s alliance partners that are 
also partnered with each other, weighted by the 
number of each fi rm’s partners, averaged across 
all fi rms in the network. The third, the small-world 
quotient, is a ratio of the weighted overall clustering 

a) Guided missiles 

b) Logging 

Figure 1. Highly centralized networks: guided 
missiles, logging

9 The length of the path connecting two nodes, A and B, is the 
minimum number of intermediate nodes that must be traversed 
in reaching A from B. If no path exists between a pair of 
nodes, the path length is said to be infi nite. To accommodate 
the fact that many of the nodes in our networks have infi nite 
path length, we calculate the harmonic path length by fi rst 
inverting each distance between every pair of nodes, averaging 
all of these inverted distances, and then inverting this average. 
Because the inverse of infi nity is well defi ned (zero), the har-
monic mean path length provides a measure of the distance 
between nodes that scales for the number of pairs of nodes that 
are not connected by any path.

coeffi cient of the network over the clustering coef-
fi cient that would be expected in a random graph of 
similar size and degree, divided by the ratio of the 
harmonic path length of the network over the path 
length that would be expected in a random graph of 
similar size and degree:

Weighted overall clustering coef cient
 coe
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Harmonic path length
Path length
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As shown, there is tremendous range on these mea-
sures across the industries, going from small-world 
quotients of 1.00 (e.g., footwear, logging) to 27.76 
(electronic components). Finally, the last column 
gives the number of nodes in the largest component 
of the network. This ranges from two (for networks 
consisting only of disconnected dyads) to 248 (for 
pharmaceuticals).

Graphical visualizations of networks

Visual depictions of alliance network structure are 
relatively rare, as most researchers rely on reporting 
some summary statistics of their networks, or simply 
analyze the more microlevel alliance formations as 
described earlier. Some notable exceptions include 
Powell et al.’s (2005) ‘network movie,’ which 
shows the yearly evolution of the set of collabora-
tions among multiple actors in the life sciences arena 
over a 12-year period, and Rosenkopf and Padula’s 
(2007) four snapshots of alliance network structure 
in their study of networks in the mobile communi-
cations industry. The graphics in both studies are 
complex and fascinating, yet the very feature that 
enables the development of the graphics—that is, 
the intensive study of one industry—also leaves the 
reader wondering about the generalizability of the 
results. Do other industries demonstrate these same 
structures? Is the structure in Rosenkopf and Padula 
similar to or different than the one Powell et al. dem-
onstrate? If so, how? Are the observable differences 
due to design choices on the part of each research 
team as they chose to portray their networks, or do 
they refl ect more substantive differences? The only 
way to assess this effectively is through systematic 
comparative study of multiple networks.

To this end, nine network structures are displayed 
in Figure 2. The graphs are created by spring embed-
ding the nodes based on their path lengths from one 

fi 
fi 
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another. This process brings nodes closer together 
that are directly connected or share a number of 
mutual connections, while pushing apart nodes that 
are not connected or are connected via a long path. 
Due to space constraints, this process often results 
in a ring (or crescent) of the dyadic pairs of nodes 
that are not connected to any other nodes, as is most 
obvious in the bottom row of networks (computers, 
communications, motor vehicles). The large spider-
shaped webs in these networks represent single large 
components (sets of nodes that are connected to each 
other by a path).

Contrasts between the three rows are immedi-
ately apparent, and we label three network types 

accordingly. The fi rst row of networks (broadwoven 
cotton, paper mills, leather footwear) is character-
ized by small size (between 12 and 23 members) 
and very low connections among the nodes (average 
network degree between 1.00 and 1.06).10 Hence, 
we call networks of this type disconnected. In 
sharp contrast, the bottom row (computers, com-
munications, motor vehicles) contains networks of 

221 Broadwovencotton 262 Paper mills 314 Leather footwear

357 Computer and office 
equipment

366 Communications 
equipment

371 Motor vehicles and 
equipment

372 Aircraft and parts 281 Industrial inorganic 
chemicals

384 Medical instruments 
and supplies

Figure 2. Nine industry alliance networks—graphical visualizations

10 Average network degree is not shown in Table 1 due to space 
constraints. The number of alliances per industry fi rm differs 
from average network degree in that 1) it is constrained only to 
industry fi rms, and 2) it counts an alliance announcement only 
once irrespective of the number of parties to the alliance.
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large size (between 342 and 464 members) with a 
much higher level of connectivity among the nodes 
(average network degree between 2.26 and 2.50). 
This connectivity gives rise to an identifi able main 
component, and due to its shape, we call networks 
of this type spiderwebs. The middle row (aircraft, 
chemicals, medical instruments) contains networks 
of moderate size (between 143 and 222 members) 
with a moderate level of connection among the 
nodes (average network degree between 1.35 and 
1.89). Here, no component dominates the graph, but 
many separate clusters of nodes are identifi able. We 
call networks of this type hybrids.

The small-world statistic appears to vary with 
the size and average degree of these network types. 
As size and average degree increase, so too does 
the small-world statistic (zero for all three dis-
connected networks, between 6.96 and 7.84 for 
hybrid networks, and between 14.53 and 22.74 for 
spiderweb networks). The sources of this variation 
in the small-world statistic, however, differ across 
the three types. For disconnected fi rms, there is no 
clustering. The zero-valued small-world statistic is 
generated by the zero-valued clustering coeffi cient. 
In contrast, the hybrid and disconnected networks 
exhibit higher, and largely indistinguishable, clus-
tering coeffi cients (between 0.34 and 0.62 for hybrid 
networks and between 0.35 and 0.56 for spiderweb 
networks). Here, the source of the variation in the 
small-world statistic among these two network types 
is the harmonic path length, which obtains a range 
of moderate values (2.87 to 3.03) for spiderweb net-
works, but a range of high values (5.98 to 7.11) for 
hybrid networks.

One other topic of note with regard to these net-
works types and their differences pertains specifi -
cally to the main component. While the size of the 
main component appears to vary with the size of 
the network (between two and three for discon-
nected networks, nine and 18 for hybrid networks, 
and 82 and 203 for the spiderweb networks), once 
we control for the size of the network, the percent 

of network nodes in the main component follows 
a different pattern. Specifi cally, the lowest relative 
size of the main component is found in the hybrid 
networks (ranging from four to 12 percent of nodes), 
while the disconnected networks obtain a moder-
ate relative size (ranging from 13 to 18 percent of 
nodes). Not surprisingly, the spiderweb networks 
exhibit the highest relative size for the main com-
ponent, ranging from 24 to 45 percent.

It is also worth noting that the network central-
ization does not separate as neatly among the three 
network categories as most of the other measures. 
Specifi cally, among these nine networks, central-
ization ranges from 0.0 to 6.7 percent for the dis-
connected networks; 5.5 to 11.19 percent for the 
spiderwebs, and 2.6 to 9.8 percent for the hybrids

Table 2 summarizes the distinctions between 
the three types of networks along the dimensions 
we have examined. Though the typology relies on 
arbitrary distinctions between levels of connectivity 
to create categories, it provides intuition for us to 
visualize seemingly different networks. In the next 
section, we examine some industry characteristics 
that may determine these differences.

HOW DO TECHNOLOGY 
CHARACTERISTICS DETERMINE 
ALLIANCE NETWORK STRUCTURE?

Alliances enable fi rms to pool, exchange, and jointly 
create information and other resources (Eisenhardt 
and Schoonhoven, 1996; Gulati 1998), and, thus, are 
an important factor in technological innovation. Col-
laborating can enable a fi rm to obtain necessary skills 
or resources more quickly than developing them in-
house. It is not unusual for a company to lack some 
of the complementary assets required to transform a 
body of technological knowledge into a commercial 
product. Given time, the company can develop such 
complementary assets internally. However, doing 
so extends cycle time. Instead, a company may be 

Table 2. A typology of alliance network structures

Type Network 
size

Alliance 
intensity

Small-world 
statistic

Size of 
main 

component

Relative 
size of main 
component

Disconnected Low Low Low Low Medium
Hybrid Medium Medium Medium Medium Low
Spiderweb High High High High High
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able to gain rapid access to important complemen-
tary assets by entering into strategic alliances or 
licensing arrangements (Hamel, Doz, and Prahalad, 
1989; Pisano, 1990; Shan, 1990; Venkatesan, 1992; 
Schilling and Steensma, 2001). Second, collaborat-
ing with partners can be an important source of 
learning for the fi rm. Close contact with other fi rms 
can facilitate both the transfer of knowledge between 
fi rms and the creation of new knowledge that indi-
vidual fi rms could not have created alone (Baum, 
Calabrese, and Silverman, 2000; Liebeskind et al., 
1996; Mowery et al., 1998; Rosenkopf and Almeida, 
2003). By pooling their technological resources 
and capabilities, fi rms may be able to expand their 
knowledge bases, and do so more quickly than they 
could in absence of collaboration. Third, one of the 
primary reasons that fi rms collaborate on develop-
ment project is to share the costs and risks of the 
project. This can be particularly important when a 
project is very expensive or its outcome is highly 
uncertain (Hagedoorn, Link, and Vonortas, 2000). 
Finally, fi rms may also collaborate on a develop-
ment project when such collaboration would facili-
tate the creation of a shared standard. Collaboration 
at the development stage can be an important way 
of ensuring cooperation in the commercialization 
stage of a technology, and such cooperation may be 
crucial for technologies in which compatibility and 
complementary goods are important.

In this section, we examine three technology 
dimensions that we argue have a signifi cant infl u-
ence on the formation of alliances and, hence, the 
structure of the overall network. First, we consider 
how technological dynamism and uncertainty in 
an industry encourage fi rms to form alliances and, 
thus (other things being equal) , may lead to more 
alliance activity overall. Second, we examine how 
the degree of separability of innovation activities 
(due to, for example, product modularity) enables 
coordination between fi rms via alliances rather than 
hierarchical integration. Third, we anticipate that the 
degree to which architectural control in an industry 
is governed by a small number of fi rms will signifi -
cantly infl uence the structure of the overall alliance 
network. Each of these three dimensions is discussed 
in turn.

Technological dynamism and uncertainty

Rosenkopf and Tushman (1994) proposed that 
rates of interorganizational linkage formation are 
greatest during eras of technological ferment. When 

technology is changing rapidly, fi rms may make 
greater use of alliances in their innovation activi-
ties. As mentioned previously, alliances can be an 
important mechanism for fi rms to obtain knowl-
edge or other complementary assets more quickly 
than developing them in-house (Liebeskind et al., 
1996; Rosenkopf and Almeida, 2003; Schilling and 
Steensma, 2001; Shan, 1990; Venkatesan, 1992).

Furthermore, to the degree that fi rms are uncertain 
about the direction of technological change, alliances 
may become more attractive because they provide 
considerable fl exibility compared to in-house inte-
gration of activities. The fi rm can choose between 
partners that differ in their competencies, increasing 
the fi rm’s range of production options. Addition-
ally, because alliances are often nonexclusive and 
temporary, the fi rm can change its mix of partners 
over time, both increasing the fi rm’s fl exibility and 
exposing its partners to some of the discipline of 
market incentives. Through an alliance, a fi rm can 
establish a limited stake in a venture while main-
taining the fl exibility to either increase the com-
mitment at a later date or shift these resources to 
another opportunity (Kogut, 1991; McGrath, 1997). 
In essence, fi rms can use these modes as transitional 
governance forms and as a means to gain an early 
window on emerging opportunities that they may 
want to commit to more fully in the future (Mitchell 
and Singh, 1992). Finally, alliances enable fi rms to 
share the risk of a venture, which can be particularly 
important when a technology requires large-scale 
investment or faces a highly uncertain future.

All the arguments suggest that when the indus-
try environment is characterized by dynamism and 
uncertainty, fi rms may be motivated to make greater 
use of alliances, leading to 1) a higher proportion of 
fi rms in the industry being actively engaged in alli-
ances, and 2) a higher rate of alliance activity per 
fi rm. To explore the effects of technological dyna-
mism and uncertainty, we examine both the rate of 
change of total factor productivity and the level of 
research and development intensity for each of our 
32 industries. Five industries obtain high11 levels of 
both rate of change of total factor productivity as 
well as level of R&D intensity. The convergence 
of these two different indicators suggests that these 
industries experienced signifi cant technological 

11 For each measure, we divided our set of industries into ter-
tiles: high, medium, and low. Thus, 10 industries were included 
in each of the high and low categories.
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dynamism and uncertainty during the study period. 
These industries include: computer and offi ce equip-
ment, engines and turbines, household audio and 
video equipment, motor vehicles and equipment, 
and photographic equipment and supplies. Notably, 
the pharmaceuticals and communication equipment 
industries both had exceptionally high R&D intensi-
ties (13.77 percent and 13.52 percent, respectively), 
but both had experienced declines in total factor 
productivity over the 1997 to 2002 period.

Consistent with the arguments we made earlier, 
all but one (photographic equipment and supplies) of 
the fi ve industries that rank highly on both our mea-
sures of technological dynamism also obtain high 
levels of alliances per industry fi rm, and all but two 
(computer and offi ce equipment and photographic 
equipment and supplies) obtain a high percent of 
industry fi rms that participate in alliances. Visual 
inspection of the networks for the engines and tur-
bines, household audio and video equipment, and 
motor vehicles and equipment industries in Figure 3 
shows that each exhibits a hybrid or spiderweb struc-
ture. On the other end of the spectrum, there were 
fi ve industries in the low tertile for both measures of 
technological dynamism (hydraulic cement, leather 
footwear, fur, women’s and children’s outerwear, 
and wood buildings), and all except one of these 
(hydraulic cement) also scored in the lowest tertile 
for both alliance participation rates and number of 
alliances per industry fi rm. Visual representations of 
the leather footwear and the women’s and children’s 
outerwear industry networks are shown in Figure 
4. These networks are clearly of the disconnected 
type.

As mentioned earlier, the pharmaceutical and 
communications equipment industries both had very 
high R&D intensity, but had negative changes in total 
factor productivity. As shown in Figure 5, both have 
very extensive alliance networks with spiderweb 
properties (indeed, the pharmaceutical industry has 
a signifi cantly larger alliance network than any other 
industry we examined). The pharmaceutical industry 
makes the top tertile for alliance participation rate, 
but not number of alliances per industry fi rm, and 
the communications equipment network makes the 
top tertile for number of alliances per industry fi rm, 
but not for alliance participation rate.

In sum, both theory and evidence suggest the 
following:

Proposition 1: Technological dynamism and 
uncertainty will be positively related to the 

proportion of the fi rms in the industry that engage 
in alliances.

Proposition 2: Technological dynamism and 
uncertainty will be positively related to the 
average number of alliances formed by each fi rm 
in the network.

 a) Engines and turbines 

b) Household audio and video equipment 

c) Motor vehicles and equipment 

Figure 3. Industries ranking high for technological 
dynamism: engines and turbines, household audio and 

video equipment, motor vehicles and equipment



 Comparing Alliance Network Structure Across Industries  201

Copyright © 2008 Strategic Management Society Strat. Entrepreneurship J., 1: 191–209 (2007)
 DOI: 10.1002/sej

Separability of innovation activities

Whereas technological dynamism and uncertainty 
provide motivation for fi rms to pool their efforts 
and break down the complexity of a technological 
system into more manageable pieces, it is the sepa-
rability of innovation activities that determines the 
ease or effectiveness of doing so (Baldwin and Clark, 
2000; Schilling, 2000; Schilling, 2004). Tushman 
and Rosenkopf (1992) distinguished between 
assembled product systems and the less complex 
nonassembled ones, arguing that assembled systems 
engender more community activity. In some product 
systems, components may require such extensive 
interaction—and that interaction may be so directly 
infl uenced by the design or nature of that compo-
nent—that any change in the component requires 
extensive compensating changes in the other compo-
nents of the system, or functionality is lost (Sanchez 

and Mahoney, 1996).12 For such systems, it can be 
very diffi cult to separate innovation activities in a 
way that permits multiple fi rms to act in parallel. 
In other product systems, however, the components 
(or processes involved in the development of those 
components) are relatively independent—permitting 
either sequential stages or parallel activities to be 
performed by separate fi rms. For example, in a study 
of the development of the B-2 ‘Stealth’ bomber, 
Argyres (1999) describes how four fi rms (Northrop, 
Boeing, Vaught, and General Electric) were able to 
use advanced information technology and a set of 
negotiated standards to increase the separability of 
the aircraft’s design. As a result, each company was 
able to assume design responsibility for a differ-
ent section of the aircraft and achieve coordination 
through a shared ‘technical grammar,’ rather than 
hierarchical control.

One of the key factors that can increase the sepa-
rability of innovation activities is product modular-
ity. Modularity is a continuum describing the degree 
to which a system’s components may be separated 
and recombined (Schilling, 2000). It refers both to 
the tightness of coupling between components and 
the degree to which the rules of the system archi-
tecture enable (or prohibit) the mixing and matching 
of components (Baldwin and Clark, 2000). Since all 
systems are characterized by some degree of coupling 
(whether loose or tight) between their components, 
and very few systems have components that are 
completely inseparable and may not be recombined, 
almost all systems are, to some degree, modular. 
Some systems are, however, much more modular 
than others. For example, though personal comput-
ers were originally introduced as all-in-one packages 
(such as Intel’s MCS-4, the Kenback-1, the Apple II, 
or the Commodore PET), they rapidly evolved into 
modular systems that enable the extensive mixing 

a) Leather footwear 

b) Women’s and children’s outerwear 

Figure 4. Industries ranking low for technological 
dynamism: leather footwear, women’s and 

children’s outerwear

12 An excellent example of this may be seen in software 
systems. In many software systems, there are thousands of 
interdependent programs because of redundancies in the code, 
or because of shared data. Any design change results in a 
cascade of required changes in other programs, known as a 
‘ripple effect’ (Fichman and Kemmerer, 1993). Because of 
this, many stakeholders in this industry are advocating the 
adoption of object-oriented programming, despite the major 
investment in new skills and new systems this will require 
for many fi rms. With object-oriented programming, software 
modules are designed to be encapsulated so that they do not 
require the sharing of data, and the range of their interde-
pendencies with other modules is limited to those intended 
by the interface. Encapsulation allows information within the 
module to be hidden—modules can interact without requiring 
full knowledge of the contents of each module.
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and matching of components from different vendors. 
Standardized interfaces in both hardware and soft-
ware enable many different producers to develop 
compatible components with relatively little coor-
dination. In its extreme, modularity could lower the 
rate of alliance formation by eliminating the need 
for fi rms to interact at all (e.g., when compatibil-
ity can be achieved by conformance to a perfectly 
standardized nonproprietary interface), but it is far 
more typical for interfaces to be imperfect or to 
incorporate elements of proprietary control, requir-
ing fi rms to engage in some form of negotiation and 
collaboration (such as licensing, standards consor-
tiums, etc.).13

Four of the fi ve industries discussed in the previ-
ous section as ranking high on technological dyna-
mism also exhibited high separability or modularity 
of the technology, as ranked by both sets of raters: 
computer and offi ce equipment, household audio 
video equipment, motor vehicles and equipment, 
and engines and turbines. As observed previously, 
three of these industries (household audio video 
equipment, motor vehicles, and engines and tur-
bines) demonstrate high levels for percent of indus-
try fi rms that participate in alliances and number of 
alliances per industry fi rm. On the other extreme, 
of the 10 industries ranked lowest in terms of sepa-
rability and modularity by both sets of raters, fi ve 
were also ranked in the low tertile for either alliance 
participation rate or number of alliances per indus-
try fi rm, though only one—paper mills—ranked in 
the bottom tertile for both. As previously shown in 
Figure 2, it exhibits a disconnected network with 
only a single triad.

Based on our theoretical discussion and anecdotal 
evidence, we expect that separability of innovation 
activities will be positively associated with both the 
proportion of fi rms in the industry that are engaged 
in alliance activities and the rate of alliance activity 
per fi rm.14

Proposition 3: Separability of innovation activi-
ties will be positively related to the propor-
tion of the fi rms in the industry that engage in 
alliances.

Proposition 4: Separability of innovation activi-
ties will be positively related to the average 
number of alliances formed by each fi rm in the 
network.

Concentrated architectural control

Even in industries in which innovation activities are 
highly separable, the control over the architecture of 
the fi nal system may be highly concentrated within 
the hands of a single (or few) fi rms. When an industry 
is characterized by such concentrated architectural 
control, this will have a signifi cant infl uence over its 

13 Notably, the two industries in our study most commonly 
cited as examples of industries with strong network externali-
ties—communications equipment and computers—exhibit low 
alliance participation rates, but high rates of alliances per fi rm. 
It is likely that modularity reduces the need for certain fi rms 
to participate in alliances.

14 Cowan, Jonard, and Zimmerman (2007) model the effect 
of decomposability on collaboration structure, suggesting 
that decomposability increases density and decreases struc-
tural holes. Of course, their modeling environment controls 
for network size, which has strong effects on these measures. 
In our case, with networks of varying size across industries, 
we examine the more basic measures of size (proportion) and 
degree (average alliances per fi rm).

a) Pharmaceutical industry 

b) Communications equipment industry 

Figure 5. The pharmaceutical and communications 
equipment industries
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alliance network structure. Tushman and Rosenkopf 
(1992) distinguished between ‘closed’ (geographi-
cally bounded) and ‘open’ (unbounded) assembled 
systems. Clearly, unbounded systems (such as 
telecommunications networks) require standardized 
interfaces to operate and grow effectively. The extent 
to which these unbounded systems are governed by 
open or proprietary standards will determine the con-
centration of architectural control. In general, con-
centrated architectural control will be more common 
in industries in which a dominant standard interface 
incorporates proprietary elements.

There is often considerable ambiguity in the extant 
literature about what is meant by ‘open’ versus pro-
prietary systems, largely because various domains of 
management research use the term ‘open’ in different 
ways (Gacek and Arief, 2004). Proprietary systems 
are defi ned here as those based on technology that 
is company owned and protected through patents, 
secrecy, or other mechanisms. In the information 
systems literature, the term ‘open standards’ does 
not necessarily mean that the underlying technol-
ogy is unprotected. For example, the Open Group 
standard-setting body defi nes open systems as com-
puters and communications environments based on 
de facto15 and formal interface standards, but these 
standards may be proprietary in the sense that they 
were developed, introduced, and are maintained 
by vendors (Chau and Tam, 1997). The degree to 
which rivals or complementary goods producers can 
access, augment, or distribute a proprietary technol-
ogy varies along a continuum in accordance with 
the degree of control imposed by the technology’s 
developer. Anchoring the two ends of the contin-
uum are wholly proprietary technologies, which are 
strictly protected and may be accessed, augmented, 
and distributed only by their developers, and wholly 
open technologies which may be freely accessed, 
augmented, and distributed by anyone. If a fi rm 
grants or sells the right to access, augment, or dis-
tribute its technology for commercial purposes, but 
retains some degree of control over the technology, 
this is termed a ‘partially open’ technology. Many 
technologies that are termed ‘open’ in common 
parlance are actually only partially open.

When a fi rm retains some proprietary control 
over a technology, it may be able to exert some 
degree of architectural control over the system in 

which the technology is embedded (Schilling, 2000). 
As pointed out by Prybeck, Alvarez, and Gifford 
(1991), a fi rm that possesses proprietary control over 
an important component in a system can restrict 
market access by offering that component only as 
part of a total product system. If potential entrants to 
the industry must be able to provide an entire system 
(rather than just individual components), integrated 
systems may act as a signifi cant barrier to entry 
and lower competitive intensity, particularly if one 
proprietary component of the integrated system is 
highly desired by customers and can be protected 
from compatibility with other providers’ compo-
nents. The fi rm can also control the rate at which 
the technology is upgraded or refi ned, the path it 
follows in its evolution, and its compatibility with 
previous generations. If the technology is chosen 
as a dominant design, the fi rm with architectural 
control over the technology can have great infl uence 
over the entire industry. Through selective compat-
ibility, it can infl uence which other fi rms do well and 
which do not, and it can ensure that it has a number 
of different avenues from which to profi t from the 
platform. The literature on increasing returns sug-
gests that these dynamics will be accentuated in 
industries where there are strong forces encouraging 
the adoption of a single dominant design, such as in 
industries that exhibit network externalities (Arthur, 
1994; Schilling, 1998).

Of course, platform leadership is but one form 
of architectural control. Concentrated control over 
product architecture is also found in industries where 
products are assembled into systems by what can be 
called integrators. So, for example, automobile and 
aircraft manufacturers assemble multiple subsys-
tems to produce their products, and most of these 
subsystems are outsourced to specialized producers. 
These integrators control the overall design of the 
system, and subsystem producers must conform to 
the integrator’s system requirements since the inte-
grator controls access to the end users. For complex, 
capital-intensive products, the number of integra-
tors is typically limited relative to the number of 
complementors, and the integrators’ access to the 
end users creates a great deal of bargaining power 
for the integrators (Coff, 1999). Here, the integrators 
do not need to control or even master the subsystem 
technologies, yet they maintain bargaining power 
through design and control of the overall system 
architecture.

When one or a few fi rms have signifi cant archi-
tectural control in an industry, they will tend to be 

15 A de facto standard is defi ned similarly to a dominant 
design—it is the emergence of a standard through market 
selection.
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engaged in a disproportionately high number of alli-
ances in the industry, creating hubs that account for 
a signifi cant portion of the network’s overall con-
nectivity. For example, in software, the dominance 
of Microsoft’s Windows gives the fi rm immense 
infl uence over the design of software applications 
for personal computers. Makers of complementary 
software must work to ensure that their products 
are compatible with Windows, resulting in a large 
number of joint R&D alliances and licensing agree-
ments between Microsoft and other software pro-
ducers. Thus, Microsoft is a very large hub in the 
software industry.

Alliance networks tend to have skewed degree 
distributions because larger and more prestigious 
fi rms tend to attract and sustain a far greater number 
of alliances than smaller or less prestigious fi rms 
(Stuart, 1998). Both size and visibility tend to attract 
alliance partners, while size gives the larger fi rm 
greater resources with which to manage alliance rela-
tionships. Concentrated architectural control ampli-
fi es this effect, leading to networks with extremely 
skewed degree distributions.16

Notably, such hubs can also shorten a network’s 
average path length. Hubs that are connected to 
many other nodes contract the network by provid-
ing a short path between all of the nodes to which 
they are connected. The extreme is a star graph, 
where a single node in the network connects every 
other node, leading to an average path length that 
will always be under two. Thus, we might expect 
industries with high architectural control to also 
exhibit strong small-world properties. This charac-
teristic is of particular interest to many manage-
ment researchers because the average path length 
of a network is often a crucial determinant of the 

dynamics of the network. In networks in which infor-
mation, power, disease, etc., diffuse, the length of the 
path determines how long transmission will take, the 
likelihood of the transmission being completed, and 
the degree to which whatever is being transmitted 
retains its integrity (Schilling and Phelps, 2007).

To explore these arguments in our data, we 
examine three industries that were rated high in 
architectural control: aircraft and parts, communica-
tions equipment, and motor vehicles and equipment. 
All three also exhibit exceptionally skewed degree 
distributions (see Figure 6). We used SPSS curve fi t 
estimation to assess the relationship between degree 
and frequency and found that all three fi t a power law 
function with R squares above .90 with signifi cant 
scale-free degree exponents. In the aircraft industry, 
Boeing and Rolls-Royce plc played key hub roles. 
In the communications equipment industry, the key 
hubs were Alcatel SA, Oki Electric Industries, and 
Nokia. In the motor vehicles and equipment indus-
try, Toyota was, by far, the largest hub, followed 
by Mitsubishi Corp.17 All three of these industries 
also ranked in the top 10 for small-world quotients 
(7.5, 14.53, and 22.74 respectively). In fact, of the 
10 industries ranked highest in terms of architectural 
control, six (aircraft, pharmaceuticals, motor vehi-
cles, communications equipment, medical instru-
ments, and computer and offi ce equipment) also 
make the top tertile for small-world quotient.

At the other extreme, of the 10 industries ranked 
lowest in terms of architectural control, most had 
very small networks with nearly uniform degree dis-
tributions (of degree one), and six made the lowest 
tertile for small-world quotients. For example, both 
footwear and broadwoven cotton fabric mills (pic-
tured previously in Figure 2) fall into this category: 
both are rated very low for architectural control, 
have nearly uniform degree distributions whereby 
nearly every node has a degree of one, and exhibit 
small-world quotients of zero.

In sum, we propose the following:

Proposition 5: Industries with concentrated 
architectural control will have alliances with more 
highly skewed degree distributions than industries 
without concentrated architectural control.

16 Scale-free networks are a particular kind of highly central-
ized network with a skewed degree distribution. Specifi cally, 
a network is only considered to be scale free if the distribution 
of links across nodes follows a power law. There are, however, 
highly centralized networks that are not scale free in that the 
distribution of their links across nodes does not conform to 
a power law; it is even possible to have a highly centralized 
network with a uniform degree distribution. For example, con-
sider a network wherein there are no redundant paths, and a 
single central node has four links to four other nodes, and each 
of those nodes has three links to three other nodes, and each of 
those nodes has three other links to three other nodes, and so 
forth. Such a network might represent a traditional organiza-
tional hierarchy, with the founder or CEO playing the role of 
the fi rst node. In this network, the fi rst node lies on the shortest 
path between many of the pairs of nodes in the network, giving 
this network high centralization even though every node in the 
network has the exact same number of links.

17 Notably, despite the fact that these industries exhibited scale-
free degree distributions with large hubs, none scores high for 
overall network centralization, ostensibly because there are 
multiple hubs rather than a single hub.
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Proposition 6: Concentrated architectural 
control will tend to be associated with small-
world properties.

DISCUSSION

Before we discuss any implications of our study, 
we must acknowledge two limitations. In order to 
create 32 networks systematically in a reasonable 
time frame, we made some design choices to keep 
the data collection demands manageable. First, 
each alliance network was generated from a three-
digit SIC code and included fi rms located primarily 
within the SIC code, as well as their partners (who 
in many cases are located in a different primary 
SIC code). Thus, from a three-digit SIC perspective, 
many cross-industry alliances are included. Future 
research should examine whether our fi ndings are 
robust when considering four-digit or even two-digit 
industry classifi cations, and future research should 
consider whether the relative breadth or narrow-
ness of any particular SIC code may affect fi nd-
ings. Second, our network data is cross-sectional, 
in that only three years of alliance formations are 
included for each industry. Any imputation about 
network evolution can only be induced from the 
between-industry variation in our sample. An ideal 
study would include network snapshots at several 
times over the lifecycle of an industry.

These limitations notwithstanding, our work has 
demonstrated that there is substantial variance in 
alliance network structure across industries. Visu-
ally, notable contrasts are observable between spi-
derweb, disconnected, and hybrid types of network 
structures. Furthermore, we have suggested that 
several underlying technological characteristics of 
the industry, such as dynamism and uncertainty, 
separability, and architectural control can be use-
fully associated with these structures.

There are several implications of these fi ndings, 
some of which are particular to strategic entrepre-
neurship, and others of which may be more broadly 
applied to the fi eld of network studies. To begin, 
our research shows there are signifi cant differences 
in the rate (and, presumably, importance) of alli-
ance activity across the industry networks, and this 
leads to signifi cant differences in the overall con-
nectivity of the networks. If the recent extensive 
theorizing about the network acting as a medium 
for the exchange of information and other resources 
is correct, the network connectivity of an industry 
has important implications for the alliance strategies 
pursued by new entrants. For example, in indus-
tries that are disconnected, it may not matter that 
much whether or how new fi rms engage in alliances. 
By contrast, in industries we would characterize as 
having a large spiderweb network, there may be a 
signifi cant difference between the amount of infor-
mation and resource fl ow between fi rms that are 
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connected to the main component and those that 
are not. Thus, in these industries, it may be very 
important that new entrants attempt to forge alli-
ances that connect them to this main component, and 
better still if they can forge alliances that help them 
achieve a more central position in this component. 
On the other hand, the size of these networks and the 
presence of large hubs tends to make these networks 
highly stable over time (Schilling, 2007), lessening 
the likelihood that a new entrant’s alliance strategy 
will enable them to rapidly achieve a highly central 
position or signifi cantly alter the alliance landscape. 
Thus, the entrant’s efforts to connect to the main 
component act primarily as an ‘admission ticket’ 
(Powell et al., 1996) to have access to roughly 
the same information that other participants have 
access to, helping them obtain competitive parity 
rather than conferring a superior position. In the 
networks we have labeled hybrids, where there are 
multiple signifi cant clusters that are not connected 
to each other, a new entrant’s alliance activity can 
take on even greater signifi cance. For example, if 
a new entrant focuses their effort on striking alli-
ances with partners from different clusters, the 
new entrant might be able to become a knowledge 
broker between formerly disconnected communities 
of fi rms, dramatically altering the alliance landscape 
(and concomitant information and resource fl ow) of 
the industry.

Future research should examine the entry strate-
gies utilized by fi rms in various network structures, 
as well as analyze their success. For example, Ahuja 
and Polidoro (2003) examine both the contract terms 
and the subsequent alliances formed by fi rms ini-
tially entering the alliance network in the chemicals 
industry. Their preliminary results suggested that 
new entrants accept less attractive alliance deals, 
and that these new entrants are not able to parlay 
their initially low network status into more attractive 
network positions. Is such a fi nding generalizable to 
all high-tech industries, or is it limited to industries 
that are nonseparable, like chemicals? Examples of 
fi rms such as Electronic Arts—which accepted a 
highly unfavorable alliance with Nintendo only to 
parlay that into a much more attractive one with 
Sega later on—raise the possibility that certain 
network structures enable more movement than 
others, which must be addressed by future research. 
Similarly, Gawer and Cusumano (2002) have sug-
gested that in industries with concentrated architec-
tural control, three strategies exist: platform leaders, 
wannabes, and complementors. For new entrants in 

these industries, are all three viable strategies or are 
they consigned to exploitable positions as in the 
chemicals industry?

At the industry level of analysis, which industries 
facilitate entrepreneurial entry, and how much of 
this can be associated with network structure? Do 
hybrid or spiderweb structures induce more entry? 
Rosenkopf and Padula (2007) fi nd that new entrants 
to mobile telecommunications networks frequently 
enter via multiparty deals. Again, is this a general-
izable fi nding, or specifi c to industries with strong 
standards?

Beyond implications of various network types 
for entry, it is also useful to consider how these 
types may be related to performance. Schilling and 
Phelps (2007) have considered effects of network 
structure across 11 different industries, fi nding that 
network structures that exhibit both high clustering 
and low average path lengths are associated with 
higher levels of fi rm and industry innovativeness. 
Of course, studies like these are susceptible to the 
endogeneity critique raised by Stuart and Sorenson 
elsewhere in this issue. Nonetheless, as our methods 
in these areas improve, it will become important 
to more fully understand the connections between 
industry performance, variance in fi rm-specifi c 
performance, and fi rm entry into these networks; 
most specifi cally, how these interrelated character-
istics may look very different across the structural 
types.

Next, our industry-specifi c fi ndings may indicate 
support for a weaker version of what has been called 
network endogeneity (Gulati and Gargiulo, 1999). 
A strict form of network endogeneity suggests that 
networks are inertial over time, because as network 
actors seek to form new alliances, they are enabled 
or constrained by their preexisting network posi-
tions. Others have critiqued this position because it 
does not provide an explanation for how nonnetwork 
members might join the network (Ahuja, 2000b; 
Rosenkopf et al., 2001; Rosenkopf and Padula, 2007). 
To reconcile these opposing views, consider that the 
aggregate network structure of an industry may be 
inertial over time, even though different actors may 
enter or exit the particular network positions. Since 
our work highlights the technological characteristics 
of the industry as determinants of network structure, 
it supports the notion that network structures may be 
relatively fi xed over extended periods of time, while 
allowing actors that are technologically advanced 
(or backward) to move through these alliance 
structures. Therefore, an extension of this research 
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can explore longitudinal variation in alliance 
participation as well as overall network structure.

Finally, our work raises some substantial concerns 
about the recent excitement about small worlds in the 
social network literature. Two characteristics of this 
literature merit attention. Small worlds are formally 
defi ned as networks that simultaneously exhibit low 
average path length and high clustering, and most 
researchers have focused on the main component of 
a network to assess these measures (though Schilling 
and Phelps (2007) represent a notable exception). 
Our networks make it clear that limiting analy-
ses to the main component of a network is a risky 
endeavor, even for the higher connectivity networks. 
Additionally, it is theorized that small-world struc-
tures simultaneously offer social capital benefi ts due 
to clustering and also information transfer benefi ts 
stemming from low path length. Many alliance net-
works exhibit these statistical characteristics, yet 
the underlying network structures generating these 
characteristics can be quite different. For example, 
both centralized and decentralized networks can 
generate substantial small-world statistics. Yet, the 
Watts (1999) characterization of small worlds quite 
specifi cally requires that they also be decentral-
ized—it is, after all, unsurprising to fi nd that cen-
tralized networks have short path lengths. In fact, the 
shortest possible path length is achieved via a star 
graph whereby a single node connects all the others. 
Decentralization is also a key attribute to support 
the small-world theorizing about information fl ow, 
because the combination of decentralization and a 
short path length typically means that there are many 
routes for information to reach the same destination. 
In contrast, in a centralized network, a single (or 
few) node(s) may serve as the central connecting 
point between many nodes, and these central actors 
may have neither the capacity nor the motivation 
or economic interest in sharing information. So in 
the recent rush to classify many networks as small 
worlds based on the clustering/path length ratios and 
to generalize these fi ndings to all industries, our data 
demonstrate that many alliance networks are quite 
centralized and, as such, may not offer the benefi ts 
that are theorized.

In summary, our focus on comparative network 
structure has allowed us to demonstrate a variety of 
network structures and speculate as to the determi-
nants of this structure. With these issues established, 
it is our hope that researchers will continue to make 
strides assessing how strategic entrepreneurship can 
best occur in each of these specifi c network contexts.
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