
This paper develops and tests a model of the effective-
ness of selection processes in eliminating less fit organi-
zations from a population when organizations are under-
going adaptive change. Stable organizational traits, such
as a search strategy or routine, do not imply that an orga-
nization’s performance will remain stable over time or
that cross-sectional differences in performance will per-
sist. These properties create the possibility that popula-
tion-level selection processes will be inefficient in that
organizations with potentially superior long-run perfor-
mance will be selected out. We theorize that organization-
al-level adaptation often results in fluctuations in current
performance across time. These fluctuations may attenu-
ate the degree to which current performance differences
among organizations are indicative of future perfor-
mance. As a consequence, search strategies that generate
systematically different performance trajectories, even if
they share a common long-run outcome, will generate
differing survival rates. These ideas are explored using a
formal simulation model employing the framework of NK
performance landscapes. Our central finding is that selec-
tion may be systematically prone to errors and that these
selection errors are endogenous to, and differ markedly
across, firms’ search strategies.•
The past 40 years has seen the emergence of significant
interest in examining the population dynamics of organiza-
tions from an evolutionary perspective (Campbell, 1965; Han-
nan and Freeman, 1977; Nelson and Winter, 1982). A defin-
ing feature of the evolutionary perspective is that selection
disproportionately removes organizations that are less fit. Yet
there is reason to believe that this selection process may not
be effective in eliminating organizations undergoing change.
First, selection does not operate directly on relatively stable
organizational traits, such as strategies or routines that are
fundamental to firm-level heterogeneity. Instead, selection
operates on the manifestations of those traits in terms of
observable performance outcomes such as productivity,
patents, new products, product quality and cost, market
share, sales, or profits. Moreover, even stable organizational
traits, including an organization’s search strategy, may lead to
performance manifestations that are highly variable. To the
extent that organizations’ stable traits lead to differences in
the nature of learning, they may give rise to significant differ-
ences in the reliability of performance over time. Conse-
quently, organizational populations may experience different
survival patterns in the selection process not merely based
on some inherent superiority of one form or another but also
as influenced by the dynamics of change that different forms
generate over time.

Second, though change processes and their effects on per-
formance play out over time, selection processes are funda-
mentally myopic in that they cannot “see” those future
effects. Selection is the outcome of a complex web of atom-
istic and, to some degree, also inherently myopic decisions
about the distribution of resources across firms. The quintes-
sential example of myopia is that of individual purchase deci-
sions in product markets, where products’ characteristics,
such as quality and price, drive consumers’ choice and hence

© 2007 by Johnson Graduate School,
Cornell University. 
0001-8392/07/5204-0586/$3.00.

•
Financial support from Mack Center for
Technological Change and Innovation at
the Wharton School is gratefully acknowl-
edged. We have benefited from com-
ments on prior drafts by Sendil Ethiraj,
Anne Marie Knott, Myles Shaver, Nicolaj
Siggelkow, and Sidney Winter, as well as
reviewers and participants at the Acade-
my of Management Meeting, the
BYU/Utah Winter Strategy Conference,
Informs Annual Meeting, and seminar
participants at U.C. Berkeley, the Univer-
sity of Maryland, University of Michigan,
University of Pennsylvania, and the Uni-
versity of Wisconsin. Finally, we thank
Huggy Rao and three anonymous review-
ers for a helpful set of comments on a
prior draft.

Myopia of Selection:
Does Organizational
Adaptation Limit the
Efficacy of Population
Selection?

Daniel Levinthal
University of Pennsylvania
Hart E. Posen
University of Michigan

586/Administrative Science Quarterly, 52 (2007): 586–620



selection outcomes for the product. Even forward-looking
actors in capital markets are myopic decision makers in that
they must construct expectations of future performance sole-
ly based on such indicators of past and current performance
as sales, profits, or patent filings. One important conse-
quence of the myopia of selection is that even if selection is
effective in removing inferior organizations at one point in
time, it may be ineffective over time in that it may remove
organizations that, had they survived, would have gone on to
do well.

The question is whether there are conditions under which
myopic selection can identify adapting organizations at inter-
mediate points in time, while they are still in the midst of
change, that will be superior in the long run. The existing lit-
erature provides some important rationales as to why selec-
tion processes may fail in this respect, indicating why inferior
organizations, populations, or technologies may dominate the
set of survivors (Barron, West, and Hannan, 1994; Carroll and
Harrison, 1994; Barnett and Burgelman, 1996; Barnett, 1997).
Three broad classes of answers have been proposed. First,
selection does not act on a single dimension of performance
but, in fact, on a multitude of potential performance criteria.
Thus the outcome of the selection process can be as much a
function of political and social competition as it is technical
competition on the merits of alternatives (Anderson and
Tushman, 1990). Second, organizational slack acts as a buffer
to stave off failure even when organizations are weak from a
technical efficiency standpoint (Levinthal, 1991b; Barnett,
Greve, and Park, 1994; Barron, West, and Hannan, 1994).
Third, path dependence can arise from network externalities
(David, 1985; Arthur, 1989) whereby relative market shares of
alternative forms or technology influence selection forces,
and thus outcomes at a given point in time are in part a func-
tion of prior choices and outcomes (Barron, West, and Han-
nan, 1994; Carroll and Harrison, 1994; Barnett and Burgel-
man, 1996; Barnett, 1997).

A different reason, however, is that selection may be system-
atically prone to errors, which is suggested by the results of
Carroll and Harrison’s (1994) examination of the extent to
which selection processes are historically efficient. Building
on March and Olsen (1989), Carroll and Harrison (1994: 720)
framed the issue as the extent to which “organizational
arrangements observed at a particular point in time represent
the unique outcome of some systematic process such as
competition.” Focusing on differential selection among types
of organizations, they employed a computational model of
the evolution of two populations of fully inert organizations
under an ecological selection regime based on legitimation
and competition. They concluded that deviations from histori-
cal efficiency may arise from differences in organizations’
order of entry into a population due to the positive feedback
effects of legitimation. As a result, it is possible for a popula-
tion of inferior organizations to come to dominate the set of
surviving firms if they enter first.

Carroll and Harrison (1994) focused on entry order in their
model. Alternatively, as developed here, one can start with
the assumption that organizations are engaged in a learning
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process and thus exhibit performance manifestations that
vary over time. The unfolding of an organization’s particular
history is then a function of both its idiosyncratic founding
conditions and the strategies that guide its learning. Strate-
gies that lead to higher variance in performance over time are
likely to increase the extent to which selection is prone to err
in selecting out organizations that would have gone on to
achieve a high level of performance. In turn, selection errors,
in which inferior firms survive selection, would decrease the
average performance of the set of surviving firms. When
organizations within a population are distinguished by strate-
gies that differ in reliability and performance, an important
element of selection consists of sorting among organizations
in a single population. Under these conditions, differences
across populations in reliability over time alone are sufficient
to generate outcomes in which the population with inferior
mean long-run performance, but higher reliability, dominates
the set of surviving firms.

In the model developed in this paper, we highlight the central
role of reliability in performance. In contrast to ecological
models in which selection favors reliability (Hannan and Free-
man, 1977, 1984), however, our model imposes no a priori
relationship between reliability and mortality. Rather, the role
of reliability emerges endogenously from a model in which
firms that are subject to selection employ strategies that are
inert, but these fixed search strategies guide organizational
learning.

Important stable attributes of organizations such as search
strategies or routines may differ in their contribution not only
to organizational performance at a given point in time but
also to the variance across time. In turn, these stable traits
differentially affect the extent to which selection is prone to
errors. We denote this effect on the efficacy of selection as
“selectability,” which is an organization-level construct that
measures the information content embodied in current per-
formance as a critical determinant of the efficacy of selection
in identifying organizations that will be superior in the long
run. For organizations that exhibit high levels of selectability,
intermediate performance manifestations will provide superi-
or information about their long-run performance, and conse-
quently, selection in populations of such organizations will be
more effective over time. Thus, even when a set of search
strategies across organizations shares common long-run
properties, the dynamics by which organizations reach this
long-run performance level have important implications for
the selectability among organizational populations and the
efficacy of selection as a mechanism of population-level
adaptation.

Questions about the nature of organizational change and its
consequences for the efficacy of selection, though relatively
unexplored, are not new. Campbell (1960, 1965), in laying the
foundation of evolutionary perspectives in the social sci-
ences, suggested one important factor driving the efficacy of
selection. He argued that “if discovery or expansions of
knowledge are [to be] achieved, blind variation is requisite”;
blind implies that “specific correct trials are no more likely to
occur .|.|. than specific incorrect trials” (Campbell, 1982: 86).

588/ASQ, December 2007



Nevertheless, the organizational analogue differs from its bio-
logical foundations in a critical way: organizations engage in
adaptive trial-and-error search strategies that are intended to
enhance their survival prospects (Simon, 1955; Cyert and
March, 1963; Nelson and Winter, 1982). Simon (1969: 95), in
contrast to Campbell, argued that such “trial and error is not
completely random or blind.” This classic debate highlights a
central but unresolved question related to the efficacy of
selection as a mechanism of population-level adaptation: Is
the efficacy of selection invariant to the characteristics of the
processes (e.g., blind vs. non-blind variation) that guide orga-
nizational change?

To gain insight into the effect of differential reliability on the
efficacy of selection, we implemented a formal agent-based
model using an NK methodology (Kauffman, 1993; Levinthal,
1997; Rivkin, 2000). This formal structure offers a number of
critical advantages over other forms of theorizing. First, our
theory involves the intersection of three central features of
learning models: partially stochastic outcomes, path depen-
dence, and interdependence among the adapting entities.
Under these conditions, verbal theorizing is inadequate for
the complexity of theorizing, and closed-form analytical mod-
els are nearly impossible to implement (Lane, 1993). Second,
our theory is multilevel in that it involves adaptation at both
the individual and population levels. The agent-based model
allows us both to examine individual histories and to under-
stand how these histories aggregate to population-level out-
comes. Finally, agent-based simulation methods allow us to
integrate existing theory into the model. For example, rather
than treat variance across time as exogenous, our formal
modeling approach allows differences in variance to emerge
as a consequence of organizational choices in a manner con-
sistent with extant theory.

We started with the premise that organizations are engaged
in trial-and-error adaptation intended to enhance their perfor-
mance in the face of selection pressure. We make three cen-
tral assumptions in constructing our model: (1) the character-
istics of the adaptation process are determined by
organizations’ search strategies, which we treat as fixed over
time; (2) selection is myopic, occurring on the basis of perfor-
mance at one point in the midst of this adaptation process;
and (3) the efficacy of selection is assessed based on real-
ized future performance. We began by examining a baseline
model in which we assessed the efficacy of selection across
organizations employing a very simple, fully blind adaptation
strategy. Over the subsequent four experiments, we com-
pared the baseline model to alternative implementations of
trial-and-error search strategies that varied in reliability.

SELECTION ACROSS ADAPTIVE ORGANIZATIONS

Our concern is with the efficacy of selection as a mechanism
of population-level adaptation. Selection acts by removing
inferior organizations from the population, but evolutionary
theory does not imply that selection processes lead to opti-
mal outcomes (Winter, 1964). As Simon (1991: 166) noted,
“.|.|. evolutionists sometimes talk about survival of the fittest.
But in fact, natural selection only predicts that survivors will
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be fit enough, that is, fitter than their losing competitors.”
While the term “fitter” implies non-random elimination of
less-fit organizations, it leaves open a wide range of possible
outcomes. Selection may lead to less than optimal outcomes
for two reasons. First, there may be errors in selection at any
point in time. For example, consider ten organizations, only
three of which will survive selection. Ranking the organiza-
tions in terms of performance, if selection is perfectly effec-
tive, then only the three top organizations should survive. If,
in contrast, selection is error prone, such that the top organi-
zation fails and those ranked second through fourth survive,
then selection will have increased average fitness but would
not have been perfectly effective. Second, less salient in this
discourse, but perhaps more important in an organizational
context, is that the entities over which selection is operating
may themselves be changing over time. In part, this lack of
attention in the literature may stem from the importance put
on stable organizational traits in evolutionary arguments
(Cohen et al., 1996). Yet, as the biological analogy suggests,
a fixed genetic structure need not imply a fixed phenotype.
Consider the obvious case of human development from frag-
ile newborn to robust toddler, sprouting adolescent, and
mature and eventually elderly adult. Clearly, selection at inter-
mediate points in this developmental process, even if it is
optimal in terms of removing the weakest individuals at a
given point in time, may not be optimal over time because it
removes slower developing individuals who may eventually
exhibit superior attributes. In the context of selection across
adaptive organizations, even optimal selection in the short
term need not generate optimal long-run outcomes.

The fact that selection forces operate on entities that them-
selves are undergoing a dynamic process of adaptation raises
an important issue about the efficacy of selection in an orga-
nizational context. A key factor underlying firms’ heterogene-
ity and, in turn, forming the basis for differential selection, is
the fact that organizations engage in different strategies as to
how they go about establishing an economically viable entity.
It is well recognized that distinct strategies may imply differ-
ential long-run performance and, as a consequence, may
have a significant impact on organizations’ survival prospects.
It is less well recognized that distinct strategies, because
they imply the possibility that they will unfold differently over
time, may also have an impact on organizations’ survival
prospects independent of long-run performance.

In our modeling, we focus on the implications of organization-
al adaptation for the efficacy with which selection processes
identify organizations that will be superior in the long run and
remove those that will be inferior. The existing literature in
population ecology and organization theory more broadly has
focused significant attention on a related but different issue,
the implications of organizational change for the mortality risk
of individual firms. In doing so, this literature has identified
two broad classes of mortality risks: the first related to risk
associated with the content of change and the second relat-
ed to risk in the process of change. In both cases, organiza-
tional change, even if it has long-run positive performance 
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implications, may have short-run negative performance impli-
cations that increase mortality.

Risks in the content of change reflect the problems faced by
boundedly rational firms in identifying a suitable destination
state, or desired set of outcomes. Change from the existing
state to a new state entails a significant mortality risk, as the
information required to evaluate the performance conse-
quences of such a change may not be available. Moreover,
change to a very distant destination state (exploration) entails
more risk than change to an adjacent state (exploitation or
local search), as adjacent states are more likely to result in
similar performance. Thus change leads to instability because
organizations implement changes that may have detrimental
performance. The instability associated with risk in the con-
tent of change arises because of the difficulty of evaluating
alternatives without actually implementing them. At the
stable extreme, “off-line” evaluation of alternative destination
states (Gavetti and Levinthal, 2000), using cognitive represen-
tations to evaluate alternatives without implementing them,
reduces content risk by eliminating the worst alternatives
prior to exposing them to selection forces. At the unstable
extreme, content risk is greater when search is blind,
because “specific correct trials are no more likely to occur
.|.|. than specific incorrect trials” (Campbell, 1982: 86). When
search is blind, alternatives must be implemented and
subjected to selection in order to assess their value. Content
risk thus reflects the intelligence embodied by change
efforts—the ability (or inability) to evaluate alternatives and
select only those that have positive and immediate effects on
performance.

Process risks reflect the problems that arise because of the
embedded nature of organizational structures. Theory distin-
guishes between changes in core and peripheral organization-
al elements (Thompson, 1967; Hannan and Freeman, 1984;
Levinthal, 1997). Core elements of structure are, by defini-
tion, those that are highly interdependent with other organi-
zational elements. In the microcomputer industry, Romanelli
and Tushman (1994: 1147) argued, organizational culture,
strategy, structure, power distributions, and control systems
constitute core elements. In Silicon Valley start-ups, Baron,
Burton, and Hannan (1999) studied founders’ “organizational
blueprints” as a core organizational feature that dictates the
extent of formal organizational structures that serve as con-
trol and coordination mechanisms. Although changes in
peripheral elements are considered to be feasible, research
has called into question the survival benefit of changes in
core elements (Singh, House, and Tucker, 1986; Haveman,
1992; Amburgey, Kelly, and Barnett, 1993; Barnett and Car-
roll, 1995; Dobrev, Kim, and Carroll, 2003). The risk of change
in core organizational features arises because change
requires significant adjustments across a wide variety of
interdependent organizational elements, and this in turn
engenders instability. Even small changes in core elements
may set off a cascade of related changes that disrupt existing
organizational linkages, disturb communication channels
across organizational boundaries, and disable routines (Han-
nan and Freeman, 1984). The risk of mortality is further
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increased because content and process issues interact—
interdependence across core elements of the organization
makes it more difficult to evaluate the performance conse-
quences of a change in content.

One strategy organizations use to manage the problem of the
complexities of change is to engage in the change processes
sequentially rather than in parallel, making individual changes
to organizational content in one domain, while holding all else
constant. That said, at higher levels of interdependence,
firms may need to make concurrent changes across multiple
organizational elements (Rivkin, 2000; Sorenson, 2003), and
attempts to do otherwise introduce significant organizational
instability. For example, Sorenson (2003), in a study of the
effects of the interdependence associated with the co-pro-
duction of components among computer workstation manu-
facturers, found that interdependence retards performance
and increases mortality in all but high-velocity environments.
Ethiraj and Levinthal (2004), in a simulation study of organiza-
tional adaptation, demonstrated that reciprocal interdepen-
dence (Thompson, 1967) leads to significant instability in the
face of local search, which can only be overcome by impos-
ing a strict hierarchy.

To the extent that organizational age (and to a lesser extent,
size) is a suitable proxy for routines and elaborated organiza-
tional structure, empirical work has documented a correlation
between age and mortality in the face of change (Delacroix
and Swaminathan, 1991; Kelly and Amburgey, 1991;
Amburgey, Kelly, and Barnett, 1993; Miller and Chen, 1994).
Highlighting the role of organizational structures and routines,
Dobrev, Kim, and Carroll (2003) demonstrated, in a study of
the U.S. auto industry, that change requiring a reorientation
of structures and the introduction of novel routines increases
the risk of failure, but change building on existing structures
and routines does not. That said, results in many studies
have been mixed (Baum and Amburgey, 2001), in part
because age (and size) is a proxy not only for structure but
also for accumulated resources. For example, research has
highlighted the strategic choices that older and larger firms
make to buffer themselves from failure (Miner, Amburgey,
and Stearns, 1990; Barron, West, and Hannan, 1994).

The organizations literature in general and the population
ecology literature in particular thus suggest that change itself
exposes a firm to risk (Hannan and Freeman, 1984; Miner,
Amburgey, and Stearns, 1990; Haveman, 1992; Amburgey,
Kelly, and Barnett, 1993) arising from the difficulty of identify-
ing a suitable destination state (content risk) and interdepen-
dence among elements of the elaborated structure (process
risk). The causal chain reflects the argument that content and
process issues give rise to reductions in the reliability of per-
formance over time that, in turn, increase the risk of mortali-
ty. Still unaddressed, however, is the related question of
what the consequences of reduced reliability would be for
the efficacy of selection as a driver of population-level
adaptation.

If selection is to be effective, it must be able to identify orga-
nizations at intermediate points in time that will be superior
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in the long run. This challenge reflects the difficulties in esti-
mating future performance. Although selection processes
may operate through a variety of mechanisms, inevitably,
selection must be based on current and past performance.
Even if selection processes such as financial markets are for-
ward looking, information about future performance expecta-
tions can be based only on current and past data and out-
comes. For instance, the early performance of a new
venture-capital-backed technology firm—such as the extent
to which it has achieved its early sales milestone—can be
used to assess its potential. Similarly, in educational con-
texts, standardized testing is used to assess students’ future
educational performance. In both cases, the intermediate
manifestations of performance before the adaptation process
is complete may provide only a noisy signal about long-term
performance. More generally, it is unclear to what extent the
intermediate performance manifestations of adapting organi-
zations provide a good signal about future performance.

In our modeling, we focus on how heterogeneity across orga-
nizations in reliability during the adaptation process affects
the quality of the information on which selection acts and, in
turn, the efficacy of selection. We illustrate how the informa-
tion content of current performance as it applies to predicting
future performance decreases as the instability with which
adaptation proceeds increases. The structure of the model
closely reflects its theoretical foundation in the population
ecology and organizations literature. Organizations engage in
a process of local search for alternatives (Cyert and March,
1963; Nelson and Winter, 1982; Stuart and Podolny, 1996). In
such a process, the set of potential destination states is limit-
ed to those near to the origin state, and the correlation in
performance over time is high relative to exploratory search.
But even in local search processes, organizational search
choices affect the adaptive dynamics. Building on the prior lit-
erature discussed above, the reliability of adaptation is, in
part, jointly the result of differences across firms in how
search is pursued with regard to (1) the mode by which alter-
natives are evaluated, which affects the degree of content
risk, and (2) the imposition of organizational structure (inte-
grated vs. functional), which affects the degree of process
risk. The imposition of structure may be further refined in
terms of how effort is allocated over time across elements of
structure (parallel vs. sequential allocation of effort). Taken
together, we denote these choices collectively as a search
strategy, a coherent set of rules governing learning. We have
chosen to model the mode of evaluation and the nature of
organizational structures because they closely reflect the the-
oretical foundations of the population ecology literature’s
focus on reliability, although other elements of search strate-
gies, not modeled here, may also contribute to differential
reliability.

First, evaluation to assess the performance impact of an
alternative may be conducted on-line or off-line. For on-line
evaluation, an organization must implement that alternative in
order to assess its implications for performance. As such, on-
line evaluation reflects the content risk associated with the
difficulties embodied in identifying a destination state for
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change. Off-line evaluation allows an organization to imple-
ment only those alternatives that are believed to lead to per-
formance improvements. Off-line evaluation decreases the
content risk of mortality but does not necessarily eliminate it,
because the a priori screening of alternatives may well be
imperfect. Although, on average, both methods of evaluation
allow organizations to proceed in the direction that leads to
marginal performance gains, off-line evaluation does so with
greater stability.

Second, search strategies can differ in how organizations
structure the problem-solving search effort. We considered
an underlying task structure in which the problem facing
organizations can be divided into two sub-problems, such as
research and development (R&D) and marketing, or domestic
and international business. Given the important role of organi-
zational structure in structural inertia theory, we examined
how different structures affect the degree of reliability over
time during adaptation. The simplest organizational structure
is fully integrated. In this structure, the organization does not
treat the problem as decomposable. For example, there are
no separate marketing and R&D departments. Instead,
search is structured in an integrated manner across both sub-
problems. In this sense, firms search across one large prob-
lem landscape. Alternatively, organizations may employ a
functional structure consisting of two functional units, such
as separate R&D and marketing departments. Each functional
unit focuses on a particular sub-problem and as such, firms
engage in local search on two distinct sub-problem land-
scapes.

If an organization has a functional structure, a set of search
rules governing the allocation of resources across the func-
tional units must be considered. Two fundamentally different
search strategies are possible: parallel and sequential. In par-
allel search strategies, the organization allocates its search
effort evenly across both units. In sequential search strate-
gies, it first devotes all search effort to one unit, and only
starts searching across the other after it has made a certain
degree of progress on the first. As an example of sequential
search, entrepreneurial firms in the technology sectors often
address the problem of marketing only after technological
search has yielded a working prototype. Parallel search
enables integrated trial-and-error learning across the entire
system, which tends to reveal problems more rapidly and, in
doing so, stimulates learning. At the same time, this tight-
coupling approach tends to decrease the rate of early perfor-
mance improvement. This problem arises as adaptation in
one domain, which improves performance locally, negatively
affects performance in the other domains and thus leads to
remedial action. In contrast, sequential search purposefully
suppresses learning in one domain in order to enhance learn-
ing in another (Baldwin and Clark, 2000), producing superior
early performance gains in one unit at the expense of
reduced stability over time (i.e., a non-monotonic learning
curve).

The challenge to the efficacy of selection across organizations
in the midst of adaptation is identifying the organizations that
will have superior long-run performance. The selection
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such that the rate of performance improvement varies con-
siderably over time. To the extent that adaptation is unreli-
able, selection is less effective at identifying organizations
that will be superior in the long run. In this sense, the effica-
cy of selection is endogenous to the organizational search
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process is significantly confounded by organizational hetero-
geneity in search strategies that affect both long-run perfor-
mance and the reliability of performance over time as the
organization moves toward the long-run performance out-
come. In particular, the path of adaptation over time can be
characterized by two basic types of reliability exhibited by
organizational learning curves: short-wave reliability and long-
wave reliability, as depicted by the grey learning curves in
figure 1. While short-wave reliability (figure 1, A) reflects
near-term performance cycling, long-wave reliability (figure
1, B) reflects non-monotonicity in performance improvement

Figure 1. Learning curves and intertemporal correlation in performance.
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strategies that drive differential adaptation trajectories. In our
computational model of adaptation, we examine systematic
differences in reliability across organizations and the effect of
those differences on the information available in the selection
process.

COMPUTATIONAL MODEL OF ADAPTATION IN THE
PRESENCE OF INTERMEDIATE SELECTION

We developed an agent-based simulation model to examine
the efficacy of selection across heterogeneous organizations
undergoing adaptation. We built our model on two central
assumptions, discussed above: (1) that adaptation is the
result of local search among policy choices guided by search
strategies, and (2) selection occurs on the basis of current
performance outcomes. We employed as an analytical tool
the NK model developed by Kauffman (1993), which has
found growing acceptance in the management literature in
studies of search (Levinthal, 1997), imitation (Rivkin, 2001),
organizational structure (Rivkin and Siggelkow, 2003), and
organizational architecture (Ethiraj and Levinthal, 2004). The
basic model consists of a structure for defining a fitness land-
scape (the problem space to be searched), search rules that
guide adaptation, and a selection mechanism. Each of these
elements is briefly characterized below and a detailed mathe-
matical treatment is included in the Appendix.

Landscape Structure and Fitness Functions

Our primary objective was to explore how the process of
adaptation affects the efficacy of selection. We modeled a
task environment consisting of two interconnected sub-prob-
lem landscapes (e.g., R&D and marketing; domestic and
international activity, etc.). The payoff to a set of choices in
one problem domain, or landscape, depends on the choices
made in the other. We assumed that the boundaries of these
two landscapes, along with the level of interdependencies
between them, were defined exogenously and thus were not
subject to managerial discretion in the short term. Our mod-
eling of this task environment is related to recent efforts to
study issues of organizational design (Rivkin and Siggelkow,
2003; Siggelkow and Levinthal, 2003; Ethiraj and Levinthal,
2004), in which interactions across sub-problems (land-
scapes) play a central role.

A set of choices about how an organization wishes to com-
pete and operate is represented as a location in policy space
characterized by a vector of policy choices, N1 = (a1

1, .|.|. , a
1
n1),

and N2 = (a2
1, .|.|. , a

2
n2), of lengths n1 and n2, respectively,

where the superscript represents the landscape (sub-prob-
lem), and the subscript represents the policy choice. We let
each policy choice correspond to a particular binary decision
variable, where, for example, the choice of 1 might imply the
choice of using flash memory rather than a disk drive in the
design of a new portable music player. Consider the example
in figure 2. An organization’s location on each landscape is
represented by vectors of length n1 = n2 = 4, such that N1 =
a1

1a
1
2a

1
3a

1
4 and N2 = a2

1a
2
2a

2
3a

2
4. Thus there are 2n1 = 2n2 = 24 pos-

sible combinations of policy choices in each space. The firm’s
position in the overall landscape can be represented by the
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vector N of length n = n1 + n2, such that N = {N1, N2} = (a1
1,

.|.|. , a1
n1, a2

1, .|.|. , a
2
n2).

Interactions between policy choices can occur both within a
landscape and across landscapes (Simon, 1962). As an exam-
ple, a within-sub-problem interaction in R&D would be the
interaction between a laptop’s weight and screen size, while
an across-sub-problem interaction might occur between R&D
and marketing in the form of an interaction between a lap-
top’s weight and choice of consumer- versus business-sales
channels. Interactions within a landscape are characterized by
the vector KW

j (length kW ) of policy choices with which policy
a1

j (or a2
j ) interacts on its own landscape (where j indexes the

policy choice). The example in figure 2 demonstrates the
interaction space in which kW = 2 (landscape 1 in the upper-
left quadrant and landscape 2 in the lower right, which repre-
sent two sub-problems). In the example, the payoff to policy
a1

1 (choice of 0 or 1) in landscape 1 is a function of the choic-
es made for the policies in the vector KW

1 = (a1
2, a

1
3), this rela-

tionship between policies is characterized by an “x” in the
appropriate cell. In the example in figure 2, if we let N1 =
a1

1a
1
2a

1
3a

1
4 = 1110, then KW

1 = (1,1), and the fitness contribution
of policy choice a1

1 is a function of selecting a 1 for bit a1
1, as

well as selecting a1
2 = 1 and a1

3 = 1. Changing to a1
3 = 0 would

alter the fitness contribution made by the choice of a1
1 = 1,

while the policy choice setting for a1
4 = 1 or 0 has no effect

on the fitness contribution of a1
1.

Interactions across landscapes are characterized by the vec-
tor KB

j (length kB) of policy choices in the other landscape that
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Figure 2. Example of a set of firm choices across two landscapes (N1 and N2) and the interactions between
them.*
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4
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*The x’s represent interactions across choices within a landscape (sub-problem) while the o’s represent
interactions across landscapes. For example, the payoff to choice a1

1 is a function of the choices for a1
3, a

1
4, but

also a2
2.



affect the performance contribution of a policy choice in the
focal landscape (the “o”s in the upper right and lower left).
That is, interdependencies across activities on the two land-
scapes complicate the learning process as search activity in
one domain both informs and affects progress in the other. In
the example, with kB = 1, the fitness contribution of a1

1 is also
a function of the choices made for the policies in the vector
KB

1 = (a2
2). In total, the payoff associated with an individual pol-

icy choice is conditional on all policy choices (within and
across landscapes) with which it interacts. In our example,
the payoff associated with policy choice 1 in landscape 1, a1

1,
is �1

1(a
1
1|KW

1 , KB
1) = �1

1 (a1
1|a1

2, a1
3, a2

2). The payoffs to each of
the 21+kW+kB distinct vectors associated with a policy choice
are generated by a draw from a uniform distribution u[0,1].
The fitness associated with a position on landscape 1, N1, is
simply the average of the fitness contributions of each of the
individual policy choices, such that

�1
j = 

n1

1
n1

�
j=1

�1
j (a

1
j |KW

j , KB
j ).

There is a analogous expression for the fitness associated
with N2. The total fitness is the average fitness across

1
landscapes, such that �j = 2(�1

j + �2
j ).

Rules Governing Search

Search takes the form of local trial-and-error learning, which
corresponds to “hill climbing” in a multiple-peaked perfor-
mance landscape (Levinthal, 1997). Search is performed by
evaluating the consequences for fitness of changing a ran-
domly selected policy choice aL

j where L is landscape 1 or 2.
Search strategies can differ both in how alternatives are eval-
uated and in the imposition of organizational structure.

Evaluation reflects the mechanism by which the alternatives
identified in the trial-and-error search process are assessed
and, in particular, the difference between blind and non-blind
search. On-line evaluation reflects a context in which it is not
possible to determine the value of a change in a single policy
element without implementing the change (Gavetti and
Levinthal, 2000). Thus “specific correct trials are no more
likely to occur .|.|. than specific incorrect trials” (Campbell,
1982: 86). As a consequence, fitness at the end of the period
may be either higher or lower than at the beginning of the
period. If fitness is lower, then in the next period, the organi-
zation returns to its earlier position and attempts to test
another policy choice. Once all single policy choice changes
have been examined and found to be inferior, search ceases.
In contrast, off-line evaluation is such that, if performance is
improved by making the change, it is implemented (Gavetti
and Levinthal, 2000), otherwise the potential policy change is
discarded. As such, off-line evaluation entails search in which
incorrect trials are not subjected to population selection, and
as such, off-line search is non-blind. Off-line evaluation is pos-
sible when the efficacy of a choice can be determined using
such things as cognitive evaluation, computer models, struc-
tured experiments, animal models, or prototypes. For
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instance, a particular combination of chemicals may be evalu-
ated in vivo in a laboratory, without having to test it directly
by selling the chemical in the product market.

Organizational structure reflects differences in the set of con-
straints imposed on the search process. We implemented
two alternative structures. The first structure is integrated. In
this structure, an organization chooses a policy choice to
evaluate from the entire set of N = {N1, N2} = (a1

1, .|.|. , a
1
n1, a2

1,
.|.|. , a2

n2) policies, with evaluation based on the change in fit-
ness across the global landscape. The second structure is
functional, in which the organization chooses a multidivisional
structure that matches that of the task environment. Thus
the organization is divided into two functional subunits, with
search constrained to within-unit policy changes. When
search is conducted in unit 1, only policy choices N1 =
a1

1a
1
2a

1
3a

1
4 may be examined, and only the consequences for

local unit 1’s performance are evaluated. As noted earlier, the
functional structure entails two further sets of choices. Effort
can be allocated in parallel or sequentially. In parallel alloca-
tion, in each period, the organization attempts one search
effort in each functional unit. In sequential allocation, in the
early periods (prior to period 30), the organization allocates all
resources to search in the first landscape, and only in later
periods does search begin in the second landscape.

Figure 3 highlights a typology of search strategies that arise
at the intersection of modes of evaluation and the imposition
of organizational structure. We implemented four types of
search strategies covering four of the quadrants (and sub-
quadrants) of figure 3: (Q1) Baseline: an integrated structure
with on-line evaluation—which represents the simplest
search strategy; (Q2) Integrated: an integrated structure with
off-line evaluation; (Q3a) Parallel: a functional structure with
parallel allocation of effort and off-line evaluation; and finally
(Q3b) Sequential: a functional structure with sequential allo-
cation of effort and off-line evaluation.
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Figure 3. Evaluation mode versus organizational structure: A matrix of alternative strategies.
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Selection

Because we were interested in the efficiency of selection,
we modeled adaptation and selection (organizational exit)
without considering the entry of replacement organizations.1
Selection regimes vary in their intensity—weak versus
strong. Selection was implemented as the outcome of a sto-
chastic process such that an organization’s probability of sur-
vival is a function of its fitness relative to the fitness of the
best firm at a given point in time (Wilson and Bossert, 1971).
We implemented a proportional selection model, such that
the probability of survival at a given point in time is si,t =
(�i,t/Max(�t))

Zt, where �i,t is the fitness of organization i at
time t, Max(�t) is the maximum fitness achieved by any firm
at time t; and Zt is the strength of selection. The proportional
selection model imposes competitive consequences on orga-
nizations because the probability of failure for a given organi-
zation increases with fitness of the leading organization in the
population at any point in time.2

SIMULATIONS

We used the fitness landscape described above as an analyti-
cal tool to analyze the efficacy of selection across alternative
search strategies. All simulations are for an n = 20 landscape
consisting of two sub-problems where each sub-problem cor-
responds to a single landscape with n1 = n2 = 10 interdepen-
dent policy choices. This in turn generates approximately one
million (220) policy choice combinations represented by
unique locations on the combined landscape. The interaction
structure within each sub-landscape is specified as kW = 5,
with kB = 2 interactions across landscapes. A simulation run
lasts for 100 periods and includes 200 organizations seeded
randomly on the landscape. In each period, an organization is
allocated two search attempts. All results are averaged over
100 runs, and thus we evaluated the performance of a total
of 20,000 organizations in each simulation. Our analysis pro-
ceeded in four experiments. In the first experiment, we
examined the dynamics of performance improvement and, in
particular, the reliability of adaptation across alternative
search strategies. In the second experiment, we examined
the efficacy of continuous selection (on the basis of current
performance) within populations of organizations that were
homogeneous in terms of search strategies. In doing so, we
assessed how different strategies affected the ability of
selection to act as a mechanism of population-level adapta-
tion, to determine if there are differences across strategies in
selectability—the information content of current performance
that allows selection to screen out organizations in a manner
corresponding to their long-run performance. In the third
experiment, we examined alternative selection regimes, first
by enabling selection on the basis of past as well as current
performance and, second, by implementing discrete selec-
tion at a single point in time. In the final experiment, we
allowed organizations pursuing different search strategies to
compete and examined the implications of differences across
strategies in selectability for the demographics of surviving
firms.

1
Modeling entry entails a number of choic-
es, such as whether the entry process is
random or entrants tend to be replications
of existing organizations, which would
affect our assessment of the extent to
which selection improves the population’s
performance across search strategies.

2
The selection model implemented here is
based on proportional performance. Such
a model is sensitive to the extent of
cross-sectional variation. We also ran the
models in this paper using a rank-order
selection criterion, and the results did not
change markedly.
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Experiment 1: Reliability of Alternative Search Strategies

We began by assessing the performance trajectories of alter-
native search strategies in the absence of selection. We did
so by running independent simulations for each of the four
distinct search strategies in quadrants 1 through 3 in figure 3
above. Results are presented in figures 4a–4c: (a) average
performance across time; (b) cross-sectional variation (stan-
dard deviation of fitness across firms) within the population
of organizations following a given strategy; and (c) intertem-
poral short wave reliability measured as Corr(Ft–1,Ft). The cen-
tral performance measure of fitness in figure 4a shows that
although the rate of performance increase differs markedly
across the strategies, all four strategies appear to generate a
common asymptote with an average fitness of .69. In fact,
the long-run results are not quite identical, although they are
indistinguishable at the three-digit level. In particular, func-
tional parallel strategies, by generating perturbations in one
landscape that have an impact on search in the other land-
scape, periodically enable firms to escape a poor basin of
attraction for a basin with a superior local peak. But these dif-
ferences in long-run performance across strategies are only
noticeable at higher levels of cross-landscape interdepen-
dence than was implemented in this paper and have no bear-
ing on our results.

All strategies use the same amount of effort in the search
process. Thus differences in the rate of progress can only
come from differences in search-strategy performance char-
acteristics driven by the mode of evaluation and the imposi-
tion of organizational structure. The central qualitative obser-
vation is that the baseline and sequential strategies not only
exhibit slower rates of progress but also entail far greater
cross-sectional variability, as shown in figure 4b. For the
baseline strategy, these observed results can be attributed to
the on-line evaluation, which results in some fraction of alter-
natives generating performance decrements. These errors
lead to a significant reduction in short-wave reliability that
both decreases the rate of performance improvement and
increases cross-sectional variation, particularly between peri-
ods 15 and 25, as shown in figure 4c.

Less obvious is the sharp contrast in behavior among the
three search strategies that entail off-line evaluation of alter-
natives (Quadrants 2 and 3 in figure 3). Integrated search,
which differs from the baseline strategy because it imple-
ments only performance-enhancing alternatives, proceeds
with greater reliability and, as a consequence, more rapidly
than baseline strategy search. The two functional search
strategies, parallel and sequential, match the underlying task
structure by imposing organizational structure and decompos-
ing the problem across two functional units. For example,
while marketing and R&D functions may be interconnected in
terms of solutions, firms typically decompose the problem
across two functional units. Functional search strategies
ignore the between-unit interdependence in activities and
outcomes because doing so reduces coordination costs.

Despite this commonality, the dynamics of performance of
parallel and sequential search strategies are markedly differ-
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Figure 4a. Average performance of search strategies across time.
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ent. The parallel-strategy firms exhibit performance that
closely matches that of the integrated-strategy firms. In con-
trast, sequential-strategy firms, by focusing on only one land-
scape in the early periods, limit the potential for performance
improvement. In particular, the potential improvement is on
average half that of the potential improvement that a parallel-
strategy firm can expect. Sequential-strategy firms, however,
exhibit even higher levels of short-wave reliability in early
periods by allocating all their search effort to one sub-prob-
lem landscape. This higher early reliability leads to rapid early
performance gains that are quickly offset by the limited room
for improvement in the landscape in which search efforts are
initially focused. In addition, this decoupling of search intro-
duces a second issue: the adaptation trajectory of sequential-
strategy firms is highly non-monotonic. After period 30, when
sequential organizations commence search in the second
landscape, fitness improves dramatically, cross-sectional vari-
ation decreases, and short-wave reliability returns to pre-
period 30 levels.

All search strategies examined in the first experiment led to
adaptation that converged to a common long-run perfor-
mance. Nevertheless, differences across search strategies in
the mode of evaluation of alternatives and the implementa-
tion of organizational structure gave rise to significant differ-
ences in the level of short-wave reliability. This property, in
turn, drove both the rate of performance improvement and
the level of cross-sectional variation.

Experiment 2: Implications of Reliability for the Efficacy of
Selection

In the second experiment, we examined the consequences
of differences in reliability for the efficacy of selection as a
mechanism of population-level adaptation, to assess the
extent to which selection increases average population-level
performance across the different search strategies by elimi-
nating inferior firms. Our proposition is that selection will be
more effective at identifying superior firms when those firms
pursue search strategies that exhibit higher levels of reliabili-
ty in the adaptation process.

We ran this experiment under two different selection
regimes: (1) weak selection, which removes approximately
50 percent of the population over the 100-period experiment,
and (2) strong selection, which eliminates approximately 95
percent of firms over 100 periods. The performance variable
of interest was the average improvement in population-level
fitness generated by selection, as it removes organizations
deemed to be inferior, normalized by the baseline adaptation
results. The results are presented in figures 5a (weak selec-
tion) and 5b (strong selection). The figures show that strong
selection over a population of integrated-search firms increas-
es fitness 9.34 percent more than does such selection across
a population of firms pursuing the baseline adaptation model.
Because the results are consistent across both regimes
(although less intense in the weak selection regime), we
focus our discussion on the strong selection regime.

Under the strong selection regime, both integrated and paral-
lel search strategies outperform the baseline search strategy
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in terms of long-run fitness improvement, by 9.34 and 3.85
percent, respectively, suggesting that selection is more effec-
tive at increasing population-level performance across either
integrated or parallel search than the baseline search strate-
gy. In addition, the difference in improvement between inte-
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Figure 5a. Fitness improvement under weak selection (normalized by baseline search).
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Figure 5b. Fitness improvement under strong selection (normalized by baseline search).
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grated and parallel search is large, given that the results from
experiment 1 showed only relatively small differences in
short-wave reliability. This highlights an as yet unexplored
cost of decomposing problems into constituent parts. Even
small differences in reliability that arise through the imposi-
tion of organizational structure can alter the ability of selec-
tion to facilitate effective population-level adaptation.

The results for the sequential search strategy are more com-
plex. Selection-driven performance improvements are an
order of magnitude larger for sequential search in the early
periods, reaching a peak of 250 percent of the rate exhibited
by the baseline search strategy, but this dissipates rapidly
with the activation of search efforts related to the second
sub-problem (landscape 2). In the long run, selection across
firms pursuing a sequential search strategy is less effective
than equivalent selection across the baseline blind-search
model by 6.7 percent.

To assess the significance of these differences in long-run
performance contingent on surviving selection, we conduct-
ed unpaired t-tests of the mean performance across each
strategy at period 100. The results of this test for the strong
selection regime are presented in table 1. Each data point in
the table contains the difference in fitness at period 100 as
the column less the row. Thus after selection, the average fit-
ness of a population of firms pursuing the integrated search
strategy is .0047 greater than that of a population of firms
pursuing the baseline strategy, a difference that is highly sig-
nificant at the .001 level. There are two central results from
this table. First, selection is significantly less effective across
firms pursuing the baseline blind search strategy than either
the integrated or the parallel strategies. Second, selection is
significantly less effective across the sequential strategy than
all the other search strategies examined.

To examine why selection is more or less effective across
some search strategies, we conducted two further sets of
analyses. First, we calculated the selection-error rate
observed at period 100 to determine how many of the firms
(out of 200) that survived selection were actually in the top
100 firms in period 100. The results of this analysis, which
are presented in figure 6, are read as follows: in the weak
selection regime with firms pursuing the baseline search

605/ASQ, December 2007

Myopia of Selection

Table 1

Difference in Mean Fitness at Period 100 under a Strong Selection

Regime*

Strategy Baseline Integrated Parallel

Integrated .0047•••• .— .—
(.0013) .— .—

Parallel .0027• –.0020 .—
(.0015) (.0015) .—

Sequential –.0035••• –.0081•••• –.0061••••
(.0015) (.0015) (.0017)

• p < .10; •• p < .05; ••• p < .01; •••• p ≤ .001.
* Standard errors are in parentheses. The difference in fitness is the average
row fitness less the average column fitness, with a positive difference indi-
cating greater row fitness.



strategy, of the 102 firms that survive selection, 41 of the
surviving firms were not in the top 102 of the 200 firms, thus
generating a 39-percent error rate. In general, the results of
the error-rate analysis are consistent with the performance-
improvement examination. A shift from the baseline search
strategy to integrated search leads to a decrease in the error
rate from 71 percent to 65 percent, with the error rate
increasing to 66 percent for parallel search, consistent with
the long-term performance differences exhibited in figure 5b.
The error rate across sequential search was the highest
observed, at 77 percent.

Thus the efficacy of selection as a mechanism of population-
level adaptation, highlighted by differences in population fit-
ness under selection, is driven by the extent to which the
selection process is error prone, removing organizations in
earlier periods that would have gone on to do well if they had
survived. In particular, for all search strategies except
sequential search, there appears to be a strong relationship
between the extent of short-wave reliability and selection-
error rates. As short-wave reliability increases, error rates
appear to decrease, and selection becomes more effective.

Second, we examined the nature of information available for
selection at a given point in time, focusing on how hetero-
geneity across organizations in the reliability of adaptation
affects the quality of the information on which selection acts.
The challenge over time for selection is in estimating future
performance. To what extent do the intermediate perfor-
mance manifestations of adapting organizations provide a
good signal about future performance? If differences across
search strategies affect the degree of reliability of adaptation,
then this may distort the information provided by contempo-
raneous performance, rendering it less informative about
long-run performance and in turn limiting the effectiveness of
intermediate selection.

To examine this issue, we measured long-wave reliability by
calculating the extent to which fitness at a given point in time
is correlated with long-run fitness, Corr(Ft,F100), which pro-
vides a direct measure of the informativeness of intermedi-
ate performance levels. For example, if the correlation
between fitness at period 30 and 100 is 100 percent, then fit-
ness at period 30 is perfectly informative about long-run fit-
ness. If, in contrast, the correlation is only 5 percent, then
intermediate fitness provides little useful information about
long-run fitness. The results of this analysis are shown in fig-
ure 7, which plots the correlation in fitness between period t
and period 100 across each of the search strategies. For
example, in period 15, the correlation between contempora-
neous and long-term fitness for the integrated strategy is
approximately 52 percent—that is, fitness at period 15
explains 52 percent of the variance in long-term performance.
In contrast, for the baseline blind-search strategy model, the
correlation is only 36 percent. For the sequential strategy, the
correlation drops further to 27 percent.

For the baseline, parallel, and sequential strategies, the short-
wave and long-wave reliability results are broadly similar in
terms of rank ordering. In contrast, for the sequential strate-
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gy, while the short-wave reliability is superior to that of the
baseline strategy, the long-wave reliability is greatly inferior.
This reversal stems from the temporal decomposition of the
search effort in the sequential strategy. Because the two
sub-problems (landscapes) are interdependent, the onset of
search in the second landscape in period 30 makes obsolete
much of the firm-level learning in the first landscape. As a
consequence, the selective removal of inferior sequential-
strategy firms prior to period 30 is much more likely to be in
error. The early performance improvement generated by
selection across sequential-strategy firms, shown in figure 5b
above, leads to rapid improvement in the population’s perfor-
mance and is consistent with the very high level of short-
wave reliability that this strategy demonstrates at the outset
of the simulation. But this advantage is quickly overwhelmed
by the cost associated with a significant decrease in long-
wave reliability. In the long run, this reliability deficit leads to
selection errors that decrease the ability of selection to act as
a mechanism of population-level adaptation.
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Figure 6. Selection error rates across search strategies at period 100.
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Figure 7. Long-wave reliability: The information content in contemporaneous performance.
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Finally, we examined the extent to which our results were
sensitive to differences across strategies in cross-sectional
variation. We implemented a rank-order selection regime that
was insensitive to cross-sectional variation. Our results (avail-
able from the authors) were robust to this alternative specifi-
cation. Differences in cross-sectional variation do affect the
efficacy of selection, but when there are also substantial dif-
ferences in reliability across strategies, differences in cross-
sectional variation will tend to be swamped by the contribu-
tion of these differences in reliability over time.

Experiment 3: Efficacy of Alternative Selection Regimes

The previous experiment demonstrated that the efficacy of
selection varied significantly across search strategies as a
function of the reliability of adaptive efforts. In that experi-
ment, selection was continuous, occurring in each period,
and was implemented on the basis of contemporaneous per-
formance alone. In the third experiment, we explored the
efficacy of two alternative selection regimes that, although
arbitrary in their construction, reflect important dimensions of
selection regimes observed in practice: (1) continuous selec-
tion with the use of historical information and (2) discrete
selection at period 15.

We implemented selection on the basis of historical, rather
than simply current performance. We used twenty periods of
historical data and ran the simulation models from experi-
ment 2 to ascertain if more information enhances the effica-
cy of selection. As an indication of the efficacy of selection,
we considered the error-rate results, which are reported in
figure 8. The height of the bars represents the percentage of
organizations that survive selection erroneously. The num-
bers above the bars represent the comparison with the
results from experiment 2 graphed in figures 5a and 5b.
Thus, for the baseline blind-search strategy, the use of
historical data under a strong selection regime led to an error
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Figure 8. Selection error rate with performance history.*
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rate of 71 percent, which is a reduction of 1.22 percent rela-
tive to the error rate observed in experiment 2 (e.g., current
performance only). In contrast, for the integrated, parallel,
and sequential strategies, the error rate increased by 6.68,
8.53, and 4.44 percent, respectively.

The results are informative in two respects. First, for the
more reliable strategies (integrated, parallel), historical data
are less useful predictors of future success than is current
performance, because performance at any point in time for
these monotonic strategies provides information on the
lower bound of the local peak, and therefore historical perfor-
mance data from points lower down the peak is less informa-
tive about future performance than is current performance.
Thus the counterintuitive result is that including historical
data diminishes the efficacy of selection by increasing error
rates. Second, for the less reliable strategies, which exhibit
non-monotonic performance gains, the results diverge. The
baseline strategy suffers from a deficit of short-wave reliabili-
ty. Because adaptation is blind, in any given period, the orga-
nization may implement a trial that reduces performance.
Here, the use of historical data, which in effect averages
backward, captures prior-period results that were at times
superior (higher up the local peak) to the current period, thus
providing better information on which selection could act and
resulting in a lower error rate. In contrast, sequential search
suffers from a deficit in long-wave reliability. In this case, the
use of historical data implies that after period 30 (the onset
of landscape 2 search), pre-period 30 data are still consid-
ered, and as a consequence, the error rate increases.

Discrete selection represents a regime with intermittent
rather than continuous selection and is in this sense similar
to that of a venture capital regime. We examined the out-
come of a discrete selection event at period 15. Error-rate
results on the efficacy of selection are reported in figure 9.
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Figure 9. Discrete selection error rate with performance history.*
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The main result is that discrete selection exhibits a higher
selection-error rate than does continuous selection. Under
the weak selection regime, the error rate increase is
between 16.7 and 33.1 percent. Under the strong selection
regime, the increase in error rates ranges from 6.7 to 15.1
percent. Two observations are of note. First, error rates grow
faster under the weak selection regime. Second, the imple-
mentation of discrete selection, rather than continuous selec-
tion, comes at a cost that differs across search strategies. In
particular, although the basic pattern of the efficacy of selec-
tion across alternative search strategies remains constant,
the error rate increases faster across the less reliable base-
line and sequential strategies than it does across the more
reliable integrated and parallel strategies. The largest increase
in error rate occurs in selection over the sequential strategy.
The efficacy of the results from discrete selection, however,
will be partly a function of the time at which selection is
implemented. Because our interest was in modeling a selec-
tion regime similar to that of venture capital, we examined
early selection, but as the time of discrete selection moves
later, the efficacy of selection will improve. At the extreme,
with selection at period 100, selection will simply be propor-
tionate to long-run performance.

The results of experiment 3 suggest that the general ranking
of alternative strategies in terms of selectability remains rela-
tively unchanged under alternative selection regimes. As one
would expect, a decrease in information on which selection
acts (discrete selection) reduces the efficacy of selection,
though this reduction in efficacy is less severe in a strong
selection regime. Counterintuitively, the results suggest that
in most cases, the use of more information (historical selec-
tion) also serves to reduce the efficacy of selection.

Experiment 4: Competitive Implications of Differences in
Selectability

The previous three experiments demonstrated that the effica-
cy of selection varies significantly across search strategies as
a function of the reliability of adaptation. In experiment 4, we
examined the consequences of differences across strategies
in selectability when two organizational forms (i.e., sets of
organizations pursuing different search strategies) are com-
peting for dominance in a population. Each simulation
involved 100 runs of the model with 200 firms split between
the two competing search strategy types.

Two central measures that are of interest are the relative pro-
portion of survivors of each type of organization and the prob-
ability that a given type of organization will be the winning
organization. We ran six separate simulations (three each
under the weak and strong selection regimes) in which popu-
lations of two types of firms compete: (a) baseline vs. inte-
grated, (b) baseline vs. parallel, and (c) baseline vs. sequen-
tial. In the absence of selection, all four strategies (Quadrants
1 through 3 in figure 3) generate identical long-run perfor-
mance. Contingent on surviving selection, however, this equi-
finality disappears. Figure 10 illustrates the population demo-
graphics results, the proportion of survivors in period 100 that
are non-baseline-strategy firms. Figure 11 illustrates the win-
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ner of the competition, graphing the probability that a non-
baseline-strategy firm has (or is tied for) the highest perfor-
mance at period 100. On the basis of both performance met-
rics, the integrated and parallel strategies generate superior
outcomes in competition with the baseline strategy. For
example, under strong selection, the integrated-strategy
firms come to account for 63 percent of the population of
surviving firms and an integrated-strategy firm exhibits the
highest performance amongst the survivors nearly 80 percent
of the time. In contrast, the sequential-strategy firms lose to
baseline-strategy firms on both performance metrics. The
results suggest that differences in the efficacy of selection
(driven by differential reliability) across strategies have direct
implications for the outcome of competition between alterna-
tive organizational forms. Because selection is more error
prone within the populations of less reliable search strate-
gies, many of the latently superior members of such sub-pop-
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Figure 10. Demographics of competitive outcomes (versus baseline search strategy).

Figure 11. Winner of competitive outcomes (versus baseline search strategy).
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ulations are mistakenly eliminated, significantly reducing the
likelihood that one such organization will be the winner. As a
consequence, organizations pursuing search strategies that
are more reliable, exhibiting superior selectability, come to
dominate the population of surviving organizations. In this
sense, reliability and survival are correlated even when selec-
tion occurs on the basis of performance. This final experi-
ment highlights differential selectability, driven by differences
in the reliability of adaptive efforts, as an important factor in
determining the outcome of competition in evolutionary sys-
tems in which selection occurs across organizations that are
themselves undergoing adaptation.

DISCUSSION AND CONCLUSION

Evolutionary perspectives on firms and industries have
become quite prominent in the strategy and organizations lit-
eratures (Nelson and Winter, 1982; Hannan and Freeman,
1984; Baum and Singh, 1994; Burgelman, 1996). Central to
the evolutionary argument is the presence of some process
of competitive exclusion and differential selection. Further-
more, an important strand of the strategy and organizations
literature has taken a firm-centered view of evolutionary
dynamics in analyzing the path-dependent processes of firm-
level adaptation and learning (cf. Helfat, 2003). Although
there has been some recognition of the need to consider the
interrelationship between the processes of adaptation and
selection (Levinthal, 1991a), and some important steps have
been taken in that direction (March and Shapira, 1992; Bar-
nett, Greve, and Park, 1994; Barnett and Hansen, 1996; Den-
rell and March, 2001; Greve, 2002), the micro dynamics of
the two processes have only begun to be explored. Our
objective in this paper was to use a simulation to explore the
efficacy of selection as a mechanism of population-level
adaptation when individual organizations themselves are
adapting. Our central finding from the simulations is that the
efficacy with which selection discriminates among adaptive
organizations, and as a consequence, the ability of selection
to drive population-level adaptation, is a function of the
process of organizational change itself. Search strategies that
lead to learning outcomes that exhibit high reliability are more
selectable in that selection is less prone to error when acting
across firms that are pursuing highly reliable strategies.

We adopted the assumption of inertia with respect to organi-
zations’ “genetic structure,” but this premise does not
negate the possibility, or even the likelihood, of profound
changes in the observed properties of an organization, what a
biologist would refer to as its phenotype, and, as a conse-
quence, the performance outcomes it experiences. In our
analysis, the stable fundamental organizational property was
the firm’s search strategy, both how alterative initiatives are
evaluated (on-line vs. off-line) and the structural arrange-
ments of the organization (integrated vs. functional). The
search strategy in turn determines the broad characteristics
of the dynamics of organizational adaptation.

In examining selection, efficacy can be considered from two
very different perspectives. First, from a simple cross-sec-
tional perspective, to what degree are poorly performing
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firms selected out of the population at any given point in
time? Second, from a longitudinal perspective, are those enti-
ties that are on a superior latent adaptive trajectory more like-
ly to survive? The longitudinal problem exists because organi-
zations are adapting, and selection is inherently myopic. Even
the self-consciously forward-looking selection efforts of
investment analysts and venture capitalists are necessarily
constructed on the basis of current and historical data. We
held constant cross-sectional efficacy and focused our atten-
tion on the longitudinal problem, which only exists when
there is adaptation: Under what conditions can myopic selec-
tion demonstrate the possibility of prospective intelligence,
identifying adapting organizations at intermediate points in
time, in the midst of change, that will be superior in the long
run?

Results of our model point to the fact that the efficacy of
selection is endogenous to the dynamics of organizational
adaptation. Important stable attributes of organizations such
as strategies or routines may differ not only in their contribu-
tion to organizational fitness or performance at a given point
in time but may also have differential impacts on the efficacy
of selection over time. We denoted this effect on the efficacy
of selection as selectability, an organization-level construct
that measures the information content embodied in current
performance as a determinant of the efficacy of selection in
identifying organizations that will be superior in the long run.
For organizations that exhibit high levels of selectability,
intermediate performance provides superior information
about long-run performance, and consequently, selection is
more effective longitudinally within populations of such
organizations.

An important driver of selectability is the extent to which
adaptation proceeds more or less reliably over time. Our find-
ing on reliability is closely related to the ideas developed in
the population ecology literature, in particular, the early argu-
ment that selection occurs on the basis of reliability (Hannan
and Freeman, 1984). Although later work has relaxed this
argument (cf. Hannan, 2005: 53), our results suggest that
selection on performance alone is sufficient to generate a
correlation between reliability and survival: the role of reliabili-
ty emerges endogenously from a model in which inert strate-
gies guide organizational learning in a competitive ecology.
The correlation between reliability and survival occurs
because for patterns of adaptation that are highly reliable
over time, an organization’s performance at any point in time
provides better information for selection to act upon in filter-
ing out inferior organizations (i.e., it is more selectable). For
example, the integrated search strategy exhibits higher selec-
tability than does the baseline blind strategy. As a conse-
quence, selection across integrated-strategy firms is more
effective at removing poor-quality organizations. Conditional
on survival, firms using integrated search on average outper-
form those engaged in blind search, even though uncondi-
tional on survival, they exhibit identical long-run performance.
That said, though our model highlights the process by which
selection favors reliability, it was only tested in a stable envi-
ronment. Left unexplored in our paper are the implications of
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our model for the consequences of reliability in performance
under conditions of environmental turbulence (Dobrev, Kim,
and Carroll, 2003).

Taking the myopia of selection into account has important
implications for our understanding of the interrelationship
between the processes of adaptation and selection, in partic-
ular, for understanding the relative merits of exploration ver-
sus exploitation strategies. March’s (1991) well-known result
is that exploratory strategies (with higher variance) tend to
favor long-run performance, while exploitive strategies favor
near-term performance. But strategies that are effective in
the long run must survive a series of short-run selection
demands (Levinthal and March, 1993). The myopia of selec-
tion suggests that prospects for the long-run performance
advantage of exploration must be offset by the higher perfor-
mance variance over time that tends to obscure estimates of
an organization’s underlying quality. This difficulty of estimat-
ing performance in turn increases the risk that latently superi-
or firms will fail and inferior firms will survive. It would even
suggest that firms with poor endowments would choose to
pursue an exploration strategy, not simply because it may
enhance their long-run performance prospects but also
because higher variance masks the performance deficit
between them and their rivals.

These results provide an alternative explanation for the
observation that inferior organizations often come to domi-
nate the set of surviving firms. Scholars have argued that this
might occur because performance is not the sole determi-
nant of the outcome of selection (Anderson and Tushman,
1990). Our study suggests an additional explanation: that
selection may be systematically prone to error. In contexts in
which selection is acting across organizations engaged in
adaptation, the reliability with which adaptation occurs is cen-
trally important. Strategies that are inferior may dominate if
they exhibit more reliability in their adaptive efforts.

In examining errors in the selection process, we uncovered
an important relationship between the intensity of selection
and its error rate. Researchers have long argued that higher
munificence (a less intense selection regime) gives organiza-
tions access to external resources (Finkelstein and Hambrick,
1990), which in turn increase their decision latitude and
enhance their performance (Baum and Wally, 2003). We iden-
tified an alternative mechanism by which munificence may
enhance performance, in this case, population performance.
In particular, selection that is less intense (more munificent)
is subject to fewer errors in selectively removing inferior
firms. If the distinctive properties of organizations, such as
tacit and organizationally embedded knowledge, are lost with
the dissolution of a firm, then less intense selection, with its
lower error rate may enhance social welfare.

An additional counterintuitive result is that using more infor-
mation in the selection process—using historical data in addi-
tion to current data—does not necessarily improve the effica-
cy of selection. In fact, using more data improved the
efficacy of selection only when search efforts suffered from
a lack of short-wave reliability because of a blind search strat-
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egy. The efficacy of selection across strategies that exhibited
relatively high short-wave reliability (e.g., integrated and paral-
lel) was strongly diminished by the use of historical data. For
search strategies that result in infrequent large shocks, and a
consequent lack of long-wave reliability, that devalue older
learning (e.g., sequential strategy), the use of historical data
also diminishes the efficacy of selection.

Many important empirical contexts have selection that is dis-
crete in time, rather than continuous. Perhaps the dominant
example is that of venture capital. Our results suggest that
discrete selection at early points in time is significantly less
effective than is continuous selection. This result does not
rule out the viability of discrete selection regimes. When car-
rying out selection is costly, a trade-off between frequency
and efficacy is to be expected. For example, in the venture
capital context, the frequency of selection is in part a func-
tion of the cost of engaging in a round of selection. At the
same time, our results demonstrate that in the transition
from continuous to discrete selection, error rates grow faster
under a weak selection regime than a strong selection
regime. Our model thus suggests that one would expect to
observe significantly more intense selection in a discrete
selection regime than in a continuous selection regime and
thus a much higher failure rate. This result is independent of
the arguments for high failure rates that are commonly put
forward about technological or market uncertainty and oppor-
tunity costs for venture capitalists.

Finally, our examination of the efficacy of selection also
enhances our understanding of the eternal question, what is
a good strategy? Our results suggest an interesting answer.
All else held constant, in competitive contexts in which sur-
vival is conditional on the performance of other firms, higher-
variance strategies (March, 1991) decouple mean perfor-
mance from survival and in doing so, alter the probability of
survival for individual firms. At the population level, however,
the survival of firms with inferior mean performance reflects
a long-run selection error. This result is particularly important
when increasing reliability is costly and thus reliability must
be traded off against long-run performance. For example, a
modicum of exploration may enhance long-run performance,
relative to the local search we modeled, but it does so at the
cost of decreased reliability. In such cases, counterintuitively,
an individual firm’s attempt to enhance its performance may
diminish the efficacy of selection as a mechanism of popula-
tion-level adaptation and lead to a set of surviving firms that
exhibit inferior performance. The high variance strategy may
be superior at the individual firm level but inferior at the pop-
ulation level.

A logical implication of the claim that selection makes sys-
tematic errors in identifying organizations that would go on to
do well is that, from the perspective of individual organiza-
tions, pursuing a strategy that increases selectability need
not be advantageous. For example, organizations with poor
initial strategic positions that engender limited long-run
prospects may be best served by pursuing an adaptation
strategy that purposefully obfuscates their performance out-
look, reducing their selectability. Such a strategy may
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enhance their own survival prospects, even though it reduces
the efficacy with which selection is able to enhance popula-
tion-level performance. In this sense, systematic errors in the
selection process, which are socially deleterious, may well
represent strategic opportunities for organizations.

Organizations engage in learning processes to enhance their
performance prospects. Implicit in this organizational objec-
tive is that such action enhances their survival prospects. Yet
learning is a long and drawn out process—end states of
learning may take months or years to achieve. Under the
influence of the myopia of selection, the dynamics of organi-
zational adaptation are a critical determinant of both the
likelihood of survival for any particular organization and, more
broadly, the efficacy of selection as a mechanism of
population-level adaptation.
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APPENDIX: Construction of the NK Simulation

Task Environment

Firms operate in a task environment consisting of two nearly decomposable
sub-problem spaces (landscapes). A location in landscape 1 is represented
by the vector N1 (length n1) of policy choice attributes, and similarly, a loca-
tion in landscape 2 is represented by the vector N2 (length n2). Taken togeth-
er, a location in the combined landscape can be described by the row vector
N (length n = n1 + n2) of firm policy choice attributes such that:

N = {N1, N2} = (a1
1, a

1
2, .|.|. , a

1
n1, a2

1,a
2
2, .|.|. , a

2
n2). (1)

For notational convenience, we have omitted the subscript denoting the
firm, i, from the discussion that follows. We assume that each policy choice
is binary (1 or 0) and therefore there are 2n possible combinations of organi-
zational choices.

The topography of the landscape is a function of the number of interactions
between policy choices, which influence the degree to which the payoff of a
focal policy choice depends on the value of other policy choices. Interactions
can occur both within a landscape and between landscapes (the upper-right
and lower-left quadrants in figure 2).

Consider a single policy choice j on landscape L, aL
j. For notational conve-

nience, we let L = 1 or 2 where ¬L = 2 if L = 1 and ¬L = 1 if L = 2. Let KW
j

represent the vector of policy choices of length kW (aL
j � KW

j ) within land-
scape L that affects the payoff to policy aL

j. The kW policies with which aL
j

interact are specified as the kW adjacent elements such that:

KW
j ={(aL

j+1, .|.|. , a
L
j+kW) if kW > 0

0 if kW = 0.
(2)

In addition, let KB
j represent the vector of policy choices of length kB on the

other landscape ¬L that affect the payoff to policy choice aL
j. Specifically, we

randomly fill the vector KB
j such that on average there are kB policies with

which aL.
j interact. Thus, this notation implies symmetry in values above and

below diagonal. Though we implemented and ran a model with symmetry,
and the results are identical, the models employed in the paper are not sym-
metrical.

KB
j = {(a¬L

–1
, .|.|. , a¬L

–kB)   if kB > 0

0 if kB = 0.
(3)

We defined the fitness contribution of an individual policy choice j on land-
scape L, aL

j, as �L
j, such that:

�L
j = �L

j (a L
j |aL

– ∈KW
j , a¬L

– ∈KB
j ) = �L

j (aL
j | KW

j , KB
j ). (4)
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The fitness contribution of each policy choice, �L
j , can take 21+kW+kB

unique
values that are assigned as independent and identically distributed draws
from a uniform distribution u[0,1].

When k = kW = kB = 0, the payoff to a policy choice depends on that choice
alone. As k increases, the payoff to a policy choice depends not only on that
choice but also on the value of k other policies. In general, low levels of
interactions result in a smooth landscape (at the extreme, when kW + kB = 0,
the landscape has only a single peak), and high levels of interactions result in
a very rugged landscape with many local peaks, reflecting a highly complex
task environment. Asymmetry in the levels of interactions within and
between the two nearly decomposable problem spaces, where kW >> kB,
produces a landscape that can be described as nearly decomposable. In the
extreme, when kB = 0, the landscape is fully decomposable.

The fitness of a firm with the policy choice (location) vector NL on landscape
L is defined as the average of the fitness contribution of each of its NL policy
choices such that:

1 1
�L = 

nL

nL

�
j=1

�L
j (aL

j |aL
– ∈KW

j , a
¬L

– ∈KB
j ) = 

nL

nL

�
j=1

�L
j (a

L
j |KW

j , K
B
j ). (5)

A firm’s fitness on the combined landscape  is the average of its fitness on
each individual landscape such that:

1
� = 

2 
(�1 + �2). (6)

Search

Adaptation is modeled as a local search process in which a firm selects an
innovation from an alternative set consisting of all policy-choice sets that
vary from the current set by a single policy attribute. Thus at any location on
an individual sub-problem landscape (L = 1 or 2), there are nL alternatives
from which to choose.

Firms are allocated two search efforts per period and as such, each period is
subdivided into two sub-periods t = ta and t = tb. Search varies across organi-
zational structures and methods of evaluation which can be divided into two
main forms based on organizational structure: (a) functional and (b) non-func-
tional. The parallel search strategy, which employs a functional organizational
structure with off-line evaluation, proceeds as follows. In the first sub-period
of a given period t such that t = ta, the firm selects at random one of its N1

t
landscape 1 policy choices to evaluate for possible change. Consider the pol-
icy choice a1

j,t and its inverse a^1
j,t (recall that policy choices are binary such

that a flip entails switching a 1 to a 0 and vice versa). Without moving to the
new location in landscape 1, the firm compares its expected fitness after the
flip to its fitness prior to the flip and moves to the new location (accepts the
flip) only if the move results in an improvement in fitness. The evaluation of
fitness is local, such that the firm considers only landscape 1 performance in
assessing the outcome of a search attempt. After concluding search in land-
scape 1 (L = 1), the firm then conducts search in sub-period t = tb in land-
scape 2 (L = 2). More formally, if:

1
nL

n L

�
m=1

�L
m,t(a

L
m,t; a

L¬(m,j),t, â
L
j
|KW

m,tK
B
m,t) >

1
nL

nL

�
m=1

�L
m,t(a

L
m,t; a

L
¬(m,j) ,t , a

L
j,t
|KW

m,t, K
B
m,t)

then
NL

t = (aL
¬j,t

, a^L
j,t) otherwise,

(7){NL
t = (aL

¬j,t
, aL

j,t).

The second functional structure gives rise to the sequential search strategy,
which is identical to the parallel strategy with the exception of the allocation
of effort across the two sub-problem landscapes. Prior to period 30, sequen-
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tial-strategy firms employ both search efforts in landscape 1. Post period 30,
they follow the parallel strategy outlined above, allocating one effort to each
sub-problem landscape.

Integrated search strategies come in two forms, baseline blind (on-line evalu-
ation) and integrated (off-line evaluation). For these strategies, a policy
choice is chosen from the global landscape Nt = {N1

t,N
2
t } = (a1

1, a
1
2, .|.|. , a

1
n1a2

1,
a2

2, .|.|. , a
2
n2). Two search efforts are made, one each in sub-periods t = ta and

t = tb. The performance consequences of each search effort is evaluated
analogously to equation 7, but taking into account the global (rather than
sub-problem) landscape. On-line evaluation is done by moving immediately
to the new location regardless of the performance consequences. If the flip
causes a performance decrease, then at the start of the next period, the firm
returns to its earlier location. Off-line evaluation is conducted (as earlier) with
a move to the new location only if the move improves performance.

Selection

We examined the outcome of the developmental process under selection
regimes that vary in timing, intensity, and duration. The probability of firm i
surviving a selection event in period t is defined as:

�i,t
Zt

.si,t = ( Max(�t)) (8)

where Max(�t) is the maximum fitness at time t by all firms in the popula-
tion. Zt defines the strength of selection. Because time is discrete, we treat
Zt as a vector of real numbers [0, ∞] that define the strength of selection in
each time period from t = 0 to t = tmax such that Zt = (zt, .|.|. , ztMax

). A random 
number is drawn from a uniform distribution u[0,1]. If si,t is greater than or
equal to the realization of the draw, then the firm survives. When Zt = 0, the
probability of survival for firm i in period t is si,t = 1 (100%). As Zt increases,
the probability of survival conditional on the firm’s fitness declines.

Simulation Model

The simulation models 200 firms as they search under risk of selection for
100 periods (tmax = 100). The simulation proceeds as follows. At time t = 0,
each firm is randomly allocated an initial location in both landscape 1, N1

i,0,
and landscape 2, N2

i,0. Each period t is divided into two sub-periods (parts a
and b), and firms are allocated two search efforts per period. At the end of
each full period, after all firms have completed their search effort, firms are
subject to selection. Results are averaged over 100 runs of the simulation.
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