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hoice settings are strategic to the extent that they entail cross-sectional or intertemporal linkages. These same

factors may impose daunting demands on decision makers. We develop a graph-theoretic generalization of
the NK model of fitness landscapes to model the way in which policy choices may be more or less strategic.
We use this structure to examine, through simulation, how fully articulated a strategy or set of policy choices
must be to achieve a high level of performance and how feasible it is to offset past strategic mistakes through
tactical adjustments (instead of alignment). Our analysis highlights the role of asymmetry in the interaction of
strategic choices and in particular the degree to which choices vary in terms of being influential, dependent, or

autonomous from other choices.
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1. Introduction
The interactions among choices are essential to firm
strategy. In the absence of cross-functional interac-
tions, for example, choices could be made from a
functional perspective, shrinking the scope for strat-
egy to have distinctive content as a field, beyond
that offered by individual functions. And without
intertemporal interactions, choices could be made
myopically, without requiring any sort of deep look
into the future (a point first stressed by Arrow 1964).

Strategists have responded by exploring the inter-
actions among firms’ choices both synchronically
and diachronically, to use the conventional histori-
cal categories. Synchronically, there has been renewed
interest in the multidimensionality of and complex
interactions among a firm’s policy choices at a point
in time (e.g., Porter 1996, Levinthal 1997, Rivkin
2000). And diachronically, a number of authors have
explored how earlier choices may influence later ones
(e.g., Ghemawat 1991, Teece and Pisano 1994). But
although these extensions are essential, dealing with
them does present some difficulties for strategy mak-
ing. In particular, both synchronic and diachronic
interactions induce complexity in the sense of intro-
ducing interdependency among choices (Simon 1962).
This property, in turn, makes it hard to imagine
boundedly rational actors prespecifying all relevant
policy choices, let alone rules governing their optimal
evolution.

For that reason, we focus on a different behavioral
mechanism in which boundedly rational agents—
companies that are profit seeking but not profit

maximizing—first precommit to particular policy
choices for a subset of the possible dimensions of
choice (“strategy setting”) and then follow up with
(local) search and adaptation (“tactical alignment”)
over the fitness landscape defined by the payoffs asso-
ciated with different combinations of policy choices
(Gavetti and Levinthal 2000, Siggelkow 2002a).

The principal question of interest to us here is how
well this mechanism should be expected to work
in dealing with multiple, interacting dimensions of
choice. There are two obvious types of contingencies
to be explored in this context: those in which initial
strategic precommitments align with the choices that
turn out to be optimal ex post and those in which the
two are misaligned. We use agent-based simulations
to analyze both types of contingencies. The analysis
of the alignment contingency focuses synchronically
on the completeness with which strategies must cor-
rectly be prespecified to achieve satisfactory perfor-
mance and, in particular, the implications of correctly
prespecifying policy choices that are more strategic
versus merely a greater number of policy choices.
The analysis of the misalignment contingency looks
diachronically at the dark side of precommitment: the
performance implications of irreversible mistakes in
past choices.

This line of analysis fits with growing interest in
finding a constructive middle ground between hard-
core rational accounts of strategy making and more
behavioral, emergent accounts. Our first set of anal-
yses provides a useful platform for such a dialogue
and offers some intriguing initial results. In general,
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the demands on ex ante strategy making are quite
daunting with respect to the degree to which such
ex ante strategy would have to be prespecified cor-
rectly. However, our analysis of a range of interaction
structures provides an important qualification to this
conclusion. If there is a set of influential policy choices
that have a strict hierarchical relationship with respect
to other policy choices, then it is sufficient that this
subset of variables be specified correctly to ensure an
optimal policy configuration.

The other set of results pertains to the implications
of possible constraints and commitments associated
with some subset of policy choices. A critical question
here is whether such constraints lead to an entirely
distinct, internally consistent bundle of choices (a dis-
tinct local peak) or whether such constraints lead to
strategies that maximally approximate the globally
optimal strategy, subject to the imposed constraint. In
general, when policy choices both depend on other
choices, in addition to influencing them, such a con-
straint leads to the emergence of a wholly distinct
configuration, often quite far from the global opti-
mum. However, the performance “penalty” is, by the
same token, attenuated by the fact that unconstrained
policy choices can mitigate the negative impact of
a policy constrained to differ from the value asso-
ciated with the first-best optimum. Conversely, rel-
atively independent or autonomous policies, when
constrained to be misspecified, result in configura-
tions that are not internally consistent but are closer
in distance to the globally optimal strategy. Yet these
misspecifications result in higher performance penal-
ties because autonomous policies do not provide an
opportunity for compensatory changes in other poli-
cies to mitigate the impact of such misspecification.

The following section examines the nature of inter-
dependencies among strategy choices and, in par-
ticular, links the conceptual framework of activity
systems to a more general matrix structure that allows
for directional interdependencies. We then provide a
formal representation of these ideas and characterize
the full model structure and results.

2. From Activity Systems to

Adjacency Matrices
The strategy field has long emphasized the impor-
tance of understanding the interactions or interde-
pendence among firms’ policy choices. Early work
such as Andrews (1971) took a primarily synchronic
perspective by focusing on cross-functional interac-
tions; diachronically, this work did acknowledge the
existence of resources or, more broadly, strengths
and weaknesses, with long-lasting effects but sim-
plified matters by treating them as fixed for pur-
poses of strategic planning. Porter (1996) provided

a much more articulated sense of synchronic choice
interactions with “activity systems” that highlighted
the linkages among rather detailed operating choices
as well as their interactions with—and the interde-
pendence among—a small number of higher-order
choices about how a firm positions itself relative to
the competition. Attention to diachronic interactions
is more recent but has already afforded some insights
into how earlier choices may affect later ones (e.g.,
Ghemawat 1991 on irreversibility and commitment
and Teece and Pisano 1994 on path dependence).

Grappling with interactions among choices poses
challenges for decision makers because of what
Bellman (1957), one of the progenitors of dynamic
programming, described as “the curse of dimension-
ality.” The difficulties are twofold. Even within a
purely synchronic or cross-sectional frame, rich inter-
actions among a large number of choices imply,
given the combinatorial possibilities, the nonexistence
of a general, step-by-step algorithm that can locate
the best set of choices in a “reasonable” period of
time (i.e., a polynomial function of the number of
variables) (Lewis 1985, Rivkin 1997). And, from an
diachronic perspective, such systems generally do not
lend themselves to “pushing forward” in time from
multidimensional histories to identify an optimal path
on the basis of a lower-dimension set of choice vari-
ables, even if those are the only variables of direct
interest (Sussman 1975).

How can firms cope with such complexity? Here,
the literature on strategy making is less explicit but
often seems to assume that strategies are specified
ex ante, on the basis of a priori theorizing. And here,
we break with orthodoxy and, following Simon’s
(1955) arguments regarding bounded rationality, treat
complexity as an inexpungible constraint. The bound-
edly rational behavioral mechanism that we posit—a
firm partially precommitting to its choices and then
engaging in a process of local search and adaptation—
will be specified more precisely in the next section.
What this treatment emphasizes is that, although
bounded rationality is often viewed from the lens of
the degree of actor’s cognitive capabilities, whether
this constraint binds, and its effects if it does, depend
on the decision contexts in which actors find them-
selves (Ethiraj and Levinthal 2005). Different struc-
tures of interaction pose different degrees of challenge
for boundedly rational strategy making.

One way forward is to recognize, as emphasized
in Simon’s early work on the architecture of complex
systems as well as more recent writings on modu-
larity (Baldwin and Clark 2000), that, even in com-
plex design problems, not all elements of the design
(i.e., strategy) problem affect one another, nor are the
interactions that do exist likely to be symmetric or
randomly distributed. The possibility that there may
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be some underlying structure to the interactions of
strategy choices provides some hope that the identi-
fication of a subset of critical strategy choices may be
sufficient to guide the firm toward a relatively effec-
tive position within its competitive landscape. What
constitutes a “critical” choice in this context is a func-
tion of the interaction structure among the choices.
If, as Simon (1962) suggests, design problems tend to
have some inherent hierarchy, then it might be rea-
sonable to assume that choices higher up in the hier-
archy of policy choices, that is, choices that influence
the appropriate resolution of other choices, would be
particularly important to specify correctly.

More broadly, the articulation of the underlying
structure of vectors of strategy choices might prove
a useful substrate to theorizing about strategy devel-
opment. Siggelkow’s (2002a) work on the historical
development of the activity system(s) for Vanguard’s
mutual funds can be used to illustrate the dependence
of effective strategy making on the underlying struc-
ture of choices. One developmental process consid-
ered by Siggelkow is “patch-to-patch.” The image is
that one subsystem of a firm’s strategy, such as its
product positioning, becomes fully characterized, and
then, in a sequential manner, other “subsystems” are
characterized. An alternate process is what Siggelkow
terms from “thick-to-thin.” In this dynamic, broad,
higher-order policies are first identified, and then
subsequently lower-order, more refined policies are
specified. Building on Simon (1962), we suggest that
the former process would be effective to the extent
that the interdependencies among choices are nearly
decomposable. Only in such a setting can one intelli-
gently specify the elements of one subsystem in isola-
tion. The second process, “thick-to-thin,” would seem
to be effective to the extent that there is some inherent
hierarchy in the set of choices, that the identification
of a few higher-order choices can broadly situate the
firm in the competitive landscape and effectively seed
the subsequent process of local search.

A general structure within which to explore the
impact of various patterns of interaction is suggested
by the observation that activity systems bear some
resemblance to a mathematical graph. A mathematical
graph can be summarized in terms of its adjacency
matrix, which specifies how different choices—the
vertices in the graph—are linked by the lines in the
graph (see Figure 1 for examples). In such a matrix,
choice variable i’s effect on other variables is repre-
sented by the patterns of 0’s and 1’s in column 7, with
a value of 1 indicating that the payoff associated with
the variable in the row being considered is dependent
on variable i and a value of 0 denoting independence.
A choice is influential to the extent that the column
under that policy is populated with 1’s, indicating
that the value of other policies depends on this choice.

Conversely, a policy is dependent upon other choices
to the extent that the row corresponding to that policy
is populated with 1’s in the adjacency matrix.! A pol-
icy is relatively autonomous to the extent that neither
the column nor row associated with this policy is pop-
ulated with 1’s. Also, note that the principal diagonal
of an adjacency matrix always consists of 1’s.

However, although there is a resemblance between
activity systems of the sort depicted in Porter (1996)
and adjacency matrices populated with 0’s and 1’s, it
stops well short of isomorphism. There are three prin-
cipal differences that are worth emphasizing. First,
our adjacency matrix approach does not prespecify
a distinction between higher-order and lower-order
strategic choices (the darker versus lighter circles as
characterized in depictions of activity systems): the
focus here is on identifying the choices that are strate-
gic in terms of their interactions with other choices
instead of presorting them independent of that struc-
ture. Second, the adjacency matrix approach allows
for a distinction that the activity system approach,
as conventionally articulated, does not: it unbundles
linkages by directionality (influence versus depen-
dence). Third, the activity systems approach tends
to assume that all strategic choices are freely vari-
able in each period whereas the adjacency matrix
approach accommodates more interesting diachronic-
ity by allowing for temporal precedence. The last
two enhancements associated are worth discussing in
more detail.

The second enhancement, of allowing for direc-
tionality in linkages, is necessary only if adjacency
matrices are asymmetric around the main diagonal,
i.e., if influence/dependence is not always recipro-
cal. Clearly, temporal precedence can engender such
asymmetries, a possibility that we address below.
What is less obvious is whether, within a purely
synchronic frame, choice A can affect the payoff
consequences of a second policy choice B without
symmetrical interdependence being present.

To provide an initial intuition for such structures, it
is useful to consider the literature on product design,
which has developed design structure matrices that
are formally equivalent to the adjacency matrices con-
sidered here. For instance, MacCormack et al. (2004)
offer a clear illustration of an asymmetric relation-
ship in the context of computer programming.> More
generally, analyses of interactions in actual technical

! In addition to such direct effects, variables may, of course, be indi-
rectly related through other variables.

2Their example concerns computer programming and function
calls, i.e., instructions that require specific tasks to be executed by
programs. When the function that is called is not contained within
the source program (or subroutine), “this creates a dependency
between the two source files [programs] in a specific (italics in the
original) direction. For example, if Sourcefilel calls Function A,
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Figure 1a Hierarchy with High Interdependency
1 23 4567 89 10
1 /1 000O0O0OO0OTO0ODO
2111 000O0O0O0O0O0
3117110000 O0O00O0
411 1110000O0O0O0
511111 1000O0O0
611 111110000
711111111000
g1 111111100
911 111111110
Mm\1 111111111
Figure 1b Centrality with High Interdependency
1 23 4567 89 10
1,11 11111111
2117111111110
3117111111100
411111111000
511111110000
611 111110000
711111001000
8§11 110000100
91110 0 0O0O0O0T10O0
10\1 0 000 O0O0OO0OO0O1

systems reveal strong asymmetries, such as Baldwin
and Clark’s (2000) analyses of computer systems or
Sharman and Yassine’s (2004) work on gas turbines.?

In a strategic context, reconsider the example of
Vanguard. Vanguard has been characterized as hav-
ing been founded on the basis of a highly distinc-
tive choice of organizational structure from which
other choices naturally flowed (Siggelkow 2002a).
The Vanguard Group was incorporated as a mutual
holding company in which the shareholders of the
underlying funds would own the managing fund com-
plex.* Because the company was a true mutual, admin-

which is located in Sourcefile2, we note that Sourcefilel depends
on Sourcefile2.... Note that this dependency does not imply
that Sourcefile2 depends upon Sourcefilel” (MacCormack et al.
2004, p. 9).

®Rivkin and Siggelkow (2007) make a similar argument for the
presence of asymmetric off-diagonal elements of an adjacency
matrix in their examination of the structure of interaction among a
firm’s policy choices.

* The term “mutual fund” refers to the joint holding of investment
assets. However, with the exception of Vanguard, all mutual funds
are structured such that shareholders in the fund have no owner-
ship of the entity that manages and administrates the investment
assets.

1641
Figure 1c Hierarchy with Low Interdependency
1 23 4567 89 10
1 /1000O0O0O0OO0OTO0DO
21110 0O0O0O0O0O0TO
3101 1 00O0O0O0O0TO
41011 1000O0O0TO0
5111 01 1000O0O0
610111010000
711 001111000
8§11 110100100
911 011011010
0M\1 010101111
Figure 1d Centrality with Low Interdependency
1 23 4567 89 10
101001101011
210110110100
3117 01 0100100
410101011000
511100 100O0O0O0
611 0100100O0O0
7101 01001O0O0O0
811 01 0O0O0O0T1O0O0
910 1 0 0 0 0 O0O0T1TO0
10\1 0 000 O0O0OO0OO1

istrative services shifted from being a source of profits
for the fund manager to being a “cost center” shared
by the underlying mutual funds and, correspond-
ingly, provided a focus on cost reduction not shared
by other fund complexes. Resulting choices, such as
the focus on index funds, internalizing much of the
asset management function, and the shift to direct
distribution of funds to shareholders, as opposed to
the then-conventional format of broker-dealers, fol-
lowed quite naturally from this prior choice of orga-
nizational form. Thus, there appears to be significant
asymmetry in the policy choices characterizing the
Vanguard activity system with some policies, such
as the organizational structure, having a hierarchical
relationship with other policies, such as the choice of
product focus.

We therefore allow for directionality in linkages
by distinguishing between influence and dependence
and considering the overall intensity of a choice’s
linkages to other choices. It is worth adding that these
are all well established notions in the design litera-
ture. That literature typically uses the term “visibility”
rather than influence, where an element is “visible”
to another if changes in its value affect the perfor-
mance of the other element (Sharman and Yassine
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2004). However, visibility is defined in exactly the
same manner in which we define influence: the num-
ber of 1’s in the column associated with that policy
choice in the design matrix. Furthermore, the term
“dependence” is used in this literature exactly as it is
employed here: the number of 1’s in the row associ-
ated with that policy choice in the design matrix. The
literature also notes that systems may vary in their
level of overall connectivity or interdependence.

The final enhancement associated with the adja-
cency matrix approach is the ability to allow for the
sequencing of choices. Sequential dependency rela-
tionships have been highlighted by Thompson (1967)
and are also considered in the literature on design
structure matrices, which sometimes uses them to
map process flows. For example, choices that must be
made in a strictly linear sequence can be represented
as a diagonal of 1’s just below the main diagonal.
In the current analysis, we look at diachronic inter-
actions within the simplified context of a two-stage
choice process, with a focus on the consequences of
correct versus incorrect specifications in stage one
given local search and adaptation in stage two.

Despite this last simplification, the structure of
choices implied by this structure admits a wide range
of interactions. We may observe a number of qualita-
tively different patterns in a matrix structure depend-
ing on the degree to which visibility (influence) is
symmetric and the degree of connectivity (interde-
pendence) in the system. Figures la-1d span a wide
range of patterns of interactions. Figure la is a rel-
atively hierarchical matrix in that elements (policies)
that are very influential tend not to depend on other
elements, whereas Figure 1b is rather more symmet-
ric in the sense that influential elements tend to be
highly dependent as well. Systems may also vary in
the degree to which elements are interdependent. Fig-
ures 1c and 1d display systems that are relatively hier-
archical and relatively symmetric, respectively, but
with much lower levels of interdependence than in
Figures 1a and 1b. This paper focuses on the implica-
tions of these attributes of choice interactions for the
possibility and effectiveness of strategy making.

3. Modeling Interactions

The challenge of modeling interdependent choices has
recently received considerable attention in the eco-
nomics and management literatures. One approach
has been to focus on a very special choice structure,
involving supermodularity, in which choices along
any two dimensions are pairwise complementary for
all values of the choice variables involved and for
all values of other choice variables. Topkis (1978,
1995) and Milgrom and Roberts (1990, 1995) have
used the resulting lattice models to show that these

are the weakest conditions under which it is possi-
ble to obtain monotone comparative static predictions
linking shifts in optimal choices concerning sets of
variables to changes in underlying parameters. How
weak these conditions are in absolute terms is another
matter: tradeoffs or substitution effects are ruled out,
as are reversals between substitution and complemen-
tarity because the values of relevant variables change.
Consequently, limitations are placed on the number
of “best ways to compete” (local peaks on the fit-
ness landscape, as elaborated below). If one believes,
as some strategists (e.g., Porter 1996) do, that the
interplay between complementarities and trade-offs
across multiple activities is critical to the possibility
of “many best ways to compete,” then allowing only
global complementarities seems very constricting.

The other response to the problem of multiple,
linked choices that has commanded attention recently
has been to build on the NK simulation approach
pioneered by Kauffman (1993) in evolutionary biol-
ogy (cf. Levinthal 1997, Rivkin 2000). Kauffman, draw-
ing on Wright’s (1931) notion of a fitness landscape,
developed this framework to explore the emergence
of order among biological organisms. The model has
two basic parameters, N, the total number of policy
choices, and K (<N), the number of policy choices that
each choice depends upon. More specifically, each of
the choices is assumed to be binary, and choice-by-
choice contributions to fitness levels are drawn ran-
domly from a uniform distribution over [0, 1] for each
of the 2Kt distinct payoff-relevant combinations of
which a choice can be part. Total fitness is just the
average of the fitness contribution of each of the
N individual fitness levels. Note that with K equal
to its minimum value of 0, the fitness landscape is
smooth and single-peaked: changes in the setting of
one choice variable do not affect the fitness contri-
butions of the remaining N — 1 choice variables. At
the other extreme, with K equal to N —1, a change
in a single attribute of the organization changes the
fitness contribution of all of its attributes, resulting in
many local peaks rather than just one, with each peak
associated with a set of policy choices that have some
internal consistency. No local peak can be improved
on by perturbing a single policy choice, but local
peaks may vary considerably in their associated fit-
ness levels.

The choice structure underlying the NK simulation
approach generalizes Milgrom and Roberts’ lattice-
theoretic approach based on “complementarities” in
two key respects. First, it avoids imposing a specific
structure on the linkages among choices. Second, it
allows the richness of such linkages to vary across
situations (through the K parameter). It embodies a
number of other attractions as well, most of which
we will discuss and retain below. But for our present
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purposes, it also has one glaring defect: all choices
are assumed to be equally important. This rules out,
for example, asymmetries of the sort evident in the
distinction between light and dark circles in the usual
depiction of activity systems (cf. Porter 1996). To rem-
edy this defect, we need more degrees of freedom
than are afforded by a single interactivity parame-
ter, K. This is precisely what adjacency matrices of the
sort discussed above afford: the ability to vary in the
degree to which choices influence or are influenced
by others.

As suggested earlier, the set of interrelationships
among policy choices in the case of Vanguard appears
to have a hierarchical quality. The most stylized rep-
resentation of this sense of hierarchy would be to
consider the adjacency matrix corresponding to the
Vanguard characterization as containing 1’s in one col-
umn (corresponding to the choice of organizing as a
“true” mutual) and in the principal diagonal, with 0’s
elsewhere—in graph-theoretic terms, a star. A star
graph is an extreme example of the much more gen-
eral class of hierarchical choice structures. In graph-
theoretic terms, hierarchies are best thought of as
directed (or at least rooted) trees, with interdependen-
cies (i.e., the 1’s) populating one side of the principal
diagonal. Figure 1la actually depicts a pure hierarchi-
cal form with 1’s as all the entries to the left of the
principal diagonal. Choice 1 is hierarchically the most
important, choice 2 the second most important, and so
on; such a structure lets us take a finer-grained look
at the effects of variations in the degree of hierarchical
importance than a star structure would permit.

In contrast, for instance, the Southwest activity sys-
tem depicted by Porter (1996) does not lend itself
to representation in hierarchical terms. Instead, the
policy choices captured by the circles vary in their
degree of centrality, i.e., the number of other choices
on which they are mutually dependent. Thus, “point-
to-point routes,” with five links, is more central to
Southwest’s strategy than, say, the lack of seat assign-
ments with one such link. In addition, the purely
cross-sectional nature of the representation suggests
that this notion of centrality is responsive to the
potential inferential problem that all we might be able
to observe are the linkages between choices, not the
direction of influence, i.e., that in observational terms,
we might have to work with undirected graphs—or
in adjacency matrix terms, with matrices that are sym-
metric around the principal diagonal. The particular
form of centrality depicted in Figure 1b embodies a
structure and a labeling scheme that has 1’s as all the
entries to the left of the inferior diagonal (but dis-
tributed symmetrically to the left and the right of the
principal diagonal). Thus, choice 1, with links to nine
other choices, is the most central, choice 2 the second
most central, and so on.

It is important to add that asymmetric interaction
matrices are consistent with symmetric interdepen-
dencies in overall payoff values. Consider a two-
policy system with each policy taking on a binary
value. If the returns to the first policy depend on
the second policy, then V(0,0) — V(1.0) # V(0,1) —
V(1,1). Similarly, if the returns to the second policy
depend on the first policy, then V(0,0) — V(0,1) #
V(1.0) — V(1,1). However, this symmetric relation-
ship of dependency does not imply that the associated
interaction matrix is symmetric.’

To explore systematically a range of possible adja-
cency matrices, we specify the following stochastic
process for generating them. For each policy choice,
we specify a probability p/ that policy i influences
other policy choices and a probability p¢ that the
payoff to this policy is in turn dependent on other
policies. Thus, the likelihood of a linkage such that
choice i influences policy choice j is pj'pfF. Or, to re-
parametrize these variables, pf and pf, in a useful
way, let 1, = p/(p + pf) represent the relative ten-
dency toward influence as opposed to dependency,
and let p; = (p! + pfS) represent the likelihood of
some form of interdependence as opposed to inde-
pendence.® Thus, by varying r; from 0 to 1 we specify
the relative degree to which a policy is dependent or
influential, and by varying p; from 0 to 1 we vary the
policy’s degree of interdependence.

Specifically, we examine two sorts of structures of
interactions among choices. One structure examines
the effect of heterogeneity among choices with respect
to the hierarchy of interactions, and the other exam-
ines the heterogeneity among choices with respect to
the centrality of interactions. To examine the first sort
of structure, we set p; equal to a constant value for
all choices (with 0.5 being the base case for this fixed
value) and vary r; from 1 for the first policy to 1/N
for the Nth policy in increments of 1/N to explore
structures in which policy choices vary in the degree
to which they are influential or dependent. Thus, the
first decision would have a value of r of 1 and a value
of p at a fixed level p, (again, with p, = 0.5 in the base
case), the second policy a value of 7 of (1-1/N) and a
value of p of p,, and so on. Similarly, variation in cen-
trality is examined by setting r to a fixed value of 7,
(again, with 7, = 0.5 in the base case’) and varying the

®We thank Jan Rivkin and Nicolaj Siggelkow for helping suggest
this point. For a rigorous demonstration, see the online supplement,
which is provided in the e-companion (http://manscijournal.
informs.org/).

¢ Using this parameterization, p/ =p,r, and pf =p,(1—r1,).

7 In separate analyses not reported here, we have considered a wide
range of “base-case” values for both r and p. The qualitative effects

of the hierarchical position or centrality of a policy variable on
the results of searching from a partially specified optimum or a
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value of p from 1 to 1/N in increments of 1/N. There-
fore, when examining heterogeneity in centrality, the
first policy has a value of p of 1 and a value of r of
(again, with r, = 0.5 in the base case), the second pol-
icy has a value of p of (1-1/N) and a value of r of 1,
and so on.®

For all interaction structures studied, an organiza-
tion’s policy choices are represented by a vector of
length N where each element of the vector can take on
a value of 0 or 1 (not to be confused with the 0’s and
1’s that are used to denote the absence or presence of
linkages between every pair of policy elements). The
overall fitness landscape will then consist of 2V pos-
sible policy choices, with the overall behavior of the
organization characterized by a vector {x;, x,, ..., xy},
where each x; takes on the value of 0 or 1.° If the
contribution of a given element, x;, of the policy vec-
tor to the overall payoff is influenced by K; other
elements—in ways that vary across the three struc-
tures we will analyze—then it can be represented as
fx;i [ xq,xp, .., xg,)- Therefore, each element’s pay-
off contribution can take on 2K*! different values
depending on the value of the attribute itself (either 0
or 1) and the value of the K; other elements by which
it is influenced (with each of these K; values also tak-
ing on a value of 0 or 1). Specifically, we follow prior
researchers and assign a random number drawn from
the uniform distribution from 0 to 1 to each possi-
ble f(x;|x;, X, ..., Xx) combination, with the over-
all fitness value then being defined as > ;_; o n f(%; |
Xi, Xigs -, Xig)/N.

A number of additional assumptions, based on
prior applications, that are built into this specifica-
tion should also be mentioned. First of all, there is

constrained suboptimum turn out to be quite robust to different
baseline settings of r and p. The magnitude of the effects we iden-
tify decline (rise) for lower (higher) baseline values of r and p as
does, to a lesser degree, statistical significance. Low values of these
parameters result in relatively simple fitness landscapes that pose
less of a challenge to the problem of identifying strategic configu-
rations and hence generate less variance and higher performance
relative to the global peak, whereas higher values of the baseline
parameter generate more complex landscapes that more sharply
highlight the distinct experimental settings in the analysis.

8 To provide some comparison with the more familiar analysis of
fitness landscapes with a fixed K value for all policy values, the
baseline parameter settings here generate adjacency matrices with,
on average, 14 nondiagonal 1’s, which implies, given a value of N
of 15, a realized average K value of approximately 1. There is a
slight difference between the hierarchical and centrality structure
though the magnitude of this difference is quite small with the cen-
trality structure having, on average, 1.2 more nondiagonal values
of the 225 entries in the 15 x 15 adjacency matrix.

° The model can be extended to an arbitrary finite number of pos-
sible values of an attribute, but the qualitative properties of the
model are robust to such a generalization (Kauffman 1989).

the emphasis on choice under uncertainty. In addi-
tion to its arguable descriptive realism, initial uncer-
tainty helps explain why an organization launched
over a fitness landscape may not instantly alight on
the globally optimal policy vector. Second, there is
the assumption that randomness takes the form of
a uniform distribution. Although it could be argued
that this distribution is too diffuse, we retain this
assumption to provide at least some basis for numeri-
cal comparability with prior work; furthermore, work
by Weinberger (1991) and others suggests that the
structure of the fitness landscape is not very sensitive
to the probability distribution employed. Third, there
is the equal weighting of different choices in terms of
their direct contribution (potential) to overall fitness.
Solow et al. (1999) explore the implications of differ-
entially weighting the contribution of different policy
variables to overall performance.’” Although asym-
metries in weights are clearly important, our focus
here is on asymmetries in the structure of interactions
and their implications for effective strategy formula-
tion. Finally, note that although the analysis highlights
the effects of linkages among the organization’s pol-
icy choices, it does not address linkages across firms.
In particular, one could imagine spatial competition
(or cooperation) among firms so that the fact that one
or more firms occupy a particular point on the policy
landscape changes the payoff to other firms’ occupy-
ing that region (see, for example, Lenox et al. 2007).
Clearly, such effects exist and are important. But, for
simplicity, we do not explore them in the present
analysis.

We also assume that N equals 15—a level of mul-
tidimensionality that, based on a standard result in
graph theory, is sufficient to generate more than 10"
distinct graphs. The results that we report are aver-
aged over 10,000 landscapes. The repetition is meant
to allow for the averaging out of two kinds of ran-
domness. The first reflects the range of possible adja-
cency matrices that may result for a given set of
values of p and r; the second results from the seeding
of a given performance landscape. To address the
former source of randomness, we generate 100 adja-
cency matrices for each vector of p and r values.
Each of these 100 landscapes will have an indepen-
dently drawn adjacency matrix, although based on
the same p and r values. In addition, given the real-
ized adjacency matrix, the landscapes will have a dis-
tinct seeding of fitness values. To address the latter
sort of randomness, we generate 100 distinct fitness

10 The focus of their work is to demonstrate that sufficiently extreme
weighting differences, in particular weighting the contribution of
one policy by 1 — & and the other N — 1 variables by ¢ for suffi-
ciently small values of &, can allow a process of local search to reach
the global optimum even under conditions of high interaction (K)
across policy choices.
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landscapes for each of these 100 adjacency matrices.
In analyzing our results, we normalize fitness levels,
in a manner now standard in analyses of such struc-
tures (cf. Rivkin 2000, Rivkin and Siggelkow 2003), to
control for the fact that the fitness value of the global
peak will vary from landscape to landscape even if
the landscapes share the same structural properties.
As a result, the highest possible performance is spe-
cific to a particular fitness landscape, and, therefore,
what is “good” performance must be evaluated rela-
tive to the value of the global peak in that particular
landscape. Thus, the fitness values provided in our
results are the raw fitness value divided by the fit-
ness value at the global peak for the particular fitness
landscape in which the firm is operating. These nor-
malized fitness levels, averaged over the 10,000 runs,
are what are actually reported in the next section.

4. Simulation Results

We explore the emergence of strategic positions from
two perspectives, both of which involve strategic
choices followed by local search over what might be
described as tactical choices. We first look at the pos-
sibility, or demands, of a priori specification of strate-
gies: can higher-order or strategic guidance along a
few dimensions followed by tactical adjustment and
alignment of the remaining dimensions through local
search be expected to lead to high levels of perfor-
mance? Second, we consider diachronic or temporal
linkages in conjunction with synchronic interactions.
In particular, we examine the impact of legacy mis-
specification of policy variables that are strategic in
the sense of being irreversible: what are the residual
costs of different types of initial misspecified choices,
after local search and tactical adjustment aimed at
mitigating these “mistakes” or unfortunate legacies
from prior competitive settings?

4.1. Strategic Guidance and Tactical Alignment
How might a complex policy system arise? Broadly
speaking, there are two possibilities. One is through
ex ante design of a coherent and fully articulated
activity system. Another possibility is via a process
of search and adjustment on the fitness landscape
defined by the payoff associated with different vec-
tors of policy choices. In particular, a process of local
search will eventually identify an internally coherent
set of policy choices; that is, a set of choices from
which any incremental one-policy-at-a-time change
would be dysfunctional, or what has been called a
local peak in the fitness landscape (Kauffman 1993).
However, local peaks come without warranties as to
their global or absolute desirability, so there is no
assurance that local search processes will, on their
own, lead to satisfactory performance.

The actual evolution of successful strategies prob-
ably involves elements of both ex ante design and
ex post adjustment. Full articulation a priori of a
strategic position of a high dimensionality seems
daunting; at the same time, it seems unlikely to be
purely emergent. A plausible picture of managerial
processes seems to be that although there is some top-
down prespecification of both some broad principles
and some particular policy choices, these represent
starting points of processes aimed at improving firms’
positions over time (Gavetti and Levinthal 2000,
Siggelkow 2002a). This representation also has the
attractive feature of embodying elements of both the
conscious choice of strategies, in the spirit of the “con-
tent” style of strategy research, and the emergence
of strategic positions that is central to “process” dis-
cussions of strategy formulation (Mintzberg 1978,
Burgelman 1994).

Our use of this representation is motivated by the
idea that the effectiveness of strategic planning may
be inversely related to the dimensionality required of
a strategy to ensure the achievement of a reasonably
consistent set of policies. If strategy must be defined
at a very detailed operational level to achieve con-
sistency (e.g., if it must spell out the choices corre-
sponding to all of the circles in a map of an activity
system), then the requirements for strategic planning
escalate dramatically. In contrast, if a few higher-
level choices make subsequent lower-level choices
self-evident (e.g., if it suffices to spell out the choices
corresponding to just the dark circles in an activity
map, followed by a process of local search), then the
requirements for strategic planning remain relatively
modest.

Tables 1 and 2 explore this issue for the hierarchi-
cal and centrality structures, respectively, in the fol-
lowing manner. A certain number of policy choices
(“degree of match”), selected in decreasing order of
“strategic” importance (with reference to the hierar-
chical and centrality structures), are set to equal their
value at the global optimum, and the initial values
of the remaining policy choices are specified at ran-
dom. In this sense, the analysis provides an optimistic
account of the possible power of a priori strategy set-
ting in that the explicit strategy choices are assumed
to be correct, but the question remains as to how deep
and fine-grained must strategy making be for such
a priori choices to ultimately result in desirable over-
all policy configurations. These remaining policies are
then modified by a process of local search. Local
search (March and Simon 1958, Cyert and March
1963) involves the comparison of an existing policy
choice with adjacent or neighboring choices. This pro-
cess is operationalized here as involving the compar-
ison of the current policy vector with all of the other
policy vectors that differ from the current vector in
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Table 1 Value of Partially Articulated Activity Map with Hierarchical Table 2 Value of Partially Articulated Activity Map with Centrality
Structure Structure
Ordered Random Ordered Random
Number of Initial Number Final Initial Number Final Number of Initial Number Final Initial Number Final
policies value of steps fitness value of steps  fitness policies value of steps fitness value of steps  fitness
1 0.7287* 6.6422  0.9731 0.7256*  6.6551 0.9729 1 0.7194  6.9004 0.9744~ 0.7203 6.9017  0.9714*
(0.0920) (2.2727) (0.0334)  (0.0935) (2.2587) (0.0335) (0.0950) (2.3397) (0.0340) (0.0951) (2.4119) (0.0356)
2 0.7463** 6.2023  0.9771  0.7387** 6.1959  0.9758** 2 0.7331  6.4701* 0.9795~ 0.7335  6.4166* 0.9745*
(0.0897) (2.1614) (0.0309) (0.0932) (2.1915) (0.0325) (0.0949) (2.2014) (0.0313)  (0.0935) (2.3066) (0.0346)
3 0.7630* 5.7824  0.9807 0.7511** 5.8262  0.9788** 3 0.7469  6.0251* 0.9836* 0.7473  5.9333** 0.9780**
(0.0878) (2.0198) (0.0287)  (0.0933) (2.0592) (0.0311) (0.0947) (2.0981) (0.0290)  (0.0939) (2.1717) (0.0332)
4 0.7814 53181  0.9840~ 0.7663** 5.3560  0.9820** 4 0.7644* 55145 0.9886* 0.7614** 5.4999  0.9816**
(0.0856) (1.9235) (0.0261)  (0.0911) (1.9686) (0.0293) (0.0933) (1.9086) (0.0242)  (0.0919) (2.0423) (0.0309)
5 0.7997+* 4.8830  0.9875  0.7814** 4.9093  0.9852** 5 0.7833* 5.0197  0.9917  0.7769** 5.0450  0.9844**
(0.0827) (1.7914) (0.0237)  (0.0911) (1.8704) (0.0266) (0.0922) (1.7793) (0.0204)  (0.0906) (1.9245) (0.0286)
6 0.8181* 4.4264  0.9901*  0.7979* 4.4298  0.9883** 6 0.7999* 45404  0.9944*  0.7931* 4.5224  0.9872**
(0.0800) (1.6706) (0.0209)  (0.0898) (1.7371) (0.0242) (0.0905) (1.6390) (0.0169)  (0.0888) (1.7841) (0.0261)
7 0.8366** 3.9486  0.9926™  0.8128** 3.9714  0.9909** 7 0.8230** 4.0265  0.9965*  0.8122** 4.0271  0.9897**
(0.0774) (1.5591) (0.0180)  (0.0884) (1.6207) (0.0216) (0.0870) (1.5151) (0.0135)  (0.0881) (1.6614) (0.0241)
8 0.8558* 3.4782  0.9948  0.8339** 3.4573  0.9925** 8 0.8488* 3.5004* 0.9979~  0.8288** 3.5574* 0.9925**
(0.0731) (1.4280) (0.0153)  (0.0857) (1.4803) (0.0200) (0.0803) (1.3775) (0.0153)  (0.0860) (1.5240) (0.0209)
9 0.8769* 2.9761  0.9965  0.8524** 2.9978  0.9949* 9 0.8721* 3.004*  0.9988*  0.8486** 3.0418* 0.9948**
(0.0683) (1.2904) (0.0126)  (0.0821) (1.3470) (0.0133) (0.0749) (1.2784) (0.0101)  (0.0832) (1.3864) (0.0175)
10 0.8962** 2.5043  0.9978  0.8731** 2.5010  0.9967** 10 0.8966** 2.4945* 0.9997*  0.8704** 2.5254*  0.9965**
(0.0629) (1.1985) (0.0100)  (0.0775) (1.2090) (0.0133) (0.0676) (1.1327) (0.0077)  (0.0768) (1.2199) (0.0146)
11 0.9182* 1.9874* 0.9987  0.8952** 2.0122% 0.9981** 11 0.9204** 2.0054  0.9998  0.8931** 2.0273  0.9980**
(0.0569) (1.0436) (0.0077)  (0.0727) (1.0576) (0.0097) (0.0578) (1.0084) (0.0039) (0.0735) (1.0914) (0.0111)
12 0.9386** 1.5047  0.9994  0.9188** 1.5044  0.9989** 12 0.9426** 1.4944* 1.0000  0.9165** 1.5216*  0.9990**
(0.0487) (0.8924) (0.0049)  (0.0654) (0.8979) (0.0077) (0.0486) (0.8706) (0.0000) (0.0672) (0.8995) (0.0075)
13 0.9579** 1.0224* 0.9997 0.9452* 0.9970* 0.9997 13 0.9635* 0.9978  1.0000*  0.9438** 0.9993  0.9996**
(0.0405) (0.7259) (0.0035)  (0.0557) (0.7226) (0.0040) (0.0377) (0.7136) (0.0000)  (0.0575) (0.7303) (0.0049)
14 0.9789** 0.4990  1.0000 0.9721* 0.4926  1.0000 14 0.9817** 0.4959  1.0000 0.9703** 0.5000  1.0000
(0.0294) (0.5000) (0.0000)  (0.0410) (0.4999) (0.0000) (0.0269) (0.5000) (0.0000)  (0.0430) (0.5000) 0.0000
15 1.0000 0.0000 1.0000 1.0000 0.1390  1.0000 15 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

*p < 0.01, **p < 0.005; standard deviations are provided in parentheses.

terms of just one choice element. If a superior alter-
native is identified in the immediate neighborhood of
the existing policy array, it is adopted." In subsequent
periods, more local search follows until no further
replacement that immediately enhances fitness values
can be found. This dynamic leads, inexorably, to local
peaks in the fitness landscape (Levinthal 1997). Thus,
the choice variables that are correctly preset influence
the initial seeding of the organization in the fitness
landscape. From this starting point, the organization
then identifies a local peak within whose “basin of
attraction” it has fallen.

With a preset degree of match of 1, only the first,
most strategic variable is set equal to the global opti-
mum. As more variables are matched with their set-

' More precisely, local alternatives are sampled at random until a
superior (relative to the current policy) alternative is identified or
the entire set of neighboring points is exhausted. An alternative
specification would be to impose a “greedy” local search in which
all local alternatives are evaluated and the best among these, if it
is superior to the status quo, is adopted.

*p < 0.01, **p < 0.005; standard deviations are provided in parentheses.

tings at the global optimum, fitness rises steadily
according to both tables. Not surprisingly, presetting
more policy choices correctly monotonically enhances
the expected performance of the policy configuration
that the firm ultimately identifies. However, it is strik-
ing how extensive such a specification must be to
reliably obtain the global optimum. As a further test
of the importance of identifying relatively strategic
policies for strategy making, we also consider a ran-
dom baseline in which the matrix of interactions is
the same (hierarchical or centrality) but the policies
that are correctly prespecified are randomly chosen.
We observe two sorts of resulting performance dif-
ferences in the two tables. Specifying more strategic,
rather than random, policy choices leads to a superior
initial value.”? This superior initial “seeding” of the
organization in the performance landscape, in turn,

12 Statistical significance is evaluated on the basis of a t-test between
the resulting fitness value under the “ordered” versus random
specification of correct policy choices.
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leads the subsequent process of tactical adjustment
of policy choices to result in the identification of a
superior local peak as revealed by the comparison
in final fitness value in the two regimes. The gap
between performance under such a random choice of
polices to prespecify correctly and the performance
that results from the “ordered” specification of cor-
rect policy choices indicates the power of presetting
more strategic variables. In contrast, the gap between
the realized fitness level and the (normalized) value
of 1 indicates the loss from not fully articulating
the optimal policy array. This analysis implies, most
broadly, that a priori strategy making matters. The
more policies that can be specified correctly a priori,
the higher the level of fitness the organization is able
to obtain subsequent to its process of local search. Fur-
thermore, specifying more strategic policies correctly
has a statistically significant effect on the resulting
performance. However, a high level of specificity is
necessary to obtain the highest possible fitness lev-
els or configurations close to the global optimum: in
rugged landscapes, there are just too many positive-
gradient paths that lead to local peaks other than the
global one.

Although the general pattern of results described
above holds for both the hierarchical and centrality
structure, there are some differences, differences that
are amplified when we consider the impact of histor-
ical constraints on policy choices below. In particular,
the results regarding the final fitness value achieved
under the ordered versus random specification of cor-
rect policy choices are quite similar for hierarchical
and centrality structures. However, for the centrality
structure, the initial value of fitness does not differ
significantly between the random and ordered case
until four policies are correctly specified. Thus, cor-
rectly presetting variables does, under the centrality
interaction structure, seed the firm in a more attrac-
tive basin of attraction—that is, local tactical adjust-
ments from this starting point lead on average to a
superior local peak for all values of the number of
policies set correctly; however, the direct benefit, in
terms of initial fitness value, of presetting variables
that are more strategic correctly is not as powerful
within a centrality interaction structure as within a
hierarchical interaction structure. In our subsequent
analysis, we observe how tactical adjustments are able
to compensate for potentially misspecified highly cen-
tral policy choices whereas such adjustments are not
possible for policies that have low levels of interac-
tions with other policy choices—a property that helps
resolve this difference between the results of Tables 1
and 2.

4.2, Strategic Mistakes and Tactical Mitigation
Success is not the only possible outcome to strate-
gic prespecifications: they may also turn out to be

mistakes. Alternatively, even if a policy choice made
sense at one point in time, it may no longer be
suited to an environment that has shifted and yet, if
commitment-intensive, will be hard to reverse. The
analysis in this subsection focuses on the downside
rather than the upside of the effect of initial position-
ing in policy space. Specifically, it models the commit-
ment intensity or irreversibility of choices—perhaps
their most basic temporal quality—by focusing on
totally irreversible “mistakes” in the sense of policy
variables whose values are preset to mismatch rather
than match their values at the global optimum. The
objective is to explore how the underlying structure of
interactions among choices affects the residual costs
of such mistakes after local search aimed at tactical
adjustment through both mitigation of these mistakes
and efforts to align the full system of policy choices.

Table 3 summarizes the normalized fitness level
achievable when each of the 15 possible policy vari-
ables is misspecified in the sense of being preset to
a value inconsistent with its value at the global opti-
mum." The table also provides two tests of the statis-
tical significance of the effects of more or less strategic
important policies being misspecified. The first test
for differences in performance contrasts the effect of
misspecifying the ith policy versus its ith+ 1 greater
neighbor. The second test contrasts the effect of mis-
specifying the focal policy versus the least strategic
15th policy value. The former is the more stringent
test of whether misspecifying a more or less strate-
gic policy impacts final fitness because it focuses on
whether a single decrement in the strategic impor-
tance of the misspecified choice is significant, whereas
the latter test uses the less demanding criterion of per-
formance differences between misspecification of the
focal policy and that of the 15th policy."

Under a hierarchical pattern of interactions, fitness
improves markedly as the preset mismatch shifts from
one involving the higher-order variables to lower-
level policy choices (note that a negative value for dif-
ference indicates that misspecifying the more strategic
policy results in lower performance than misspecify-
ing the less strategic policy). The results are, however,
quite different under a centrality interaction structure.
In the i versus i+1 comparison, the evidence is mixed
as to whether misspecifying more strategic policies
results in reduced fitness (three significant results of
a positive difference and three significant results of a
negative contrast), although the second test, contrast-
ing the focal policy and the 15th policy, does provide

131t does not make sense to explore a random specification of the
misspecified policy because the analysis completely explores the
impact of different policies being misspecified.

4 Obviously, for the case of the 14th policy, the two tests are
identical.
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Table 3  Constraints of History Figure2  Final Policy Configurations
Hierarchy Centrality 100
Centrality _
Policy Final Difference  Difference Final Difference  Difference 90 P 7
misspecified  fitness  (ivs.i+1) (ivs.15) fitness (ivs.i+1) (ivs.15) 80 o
£ T
1 0.9308 —0.0016* —0.0148= 0.9377 —0.0015*  0.0006 2 L
(0.0447) (0.0425) £ 70 T
2 0.9324 —0.0019* —0.0133* 09392 00003  0.0021* S 60 M
(0.0447) (0.0414) g I o
3 0.9343  0.0006  —0.0114= 09389  0.0010*  0.0018" 2801 e
(0.0432) (0.0419) 2 40
4 0.9337 —0.0034 —0.0120~ 09378 —0.0007  0.0008 €
(0.0440) (0.0416) © 30
5 09370  0.0014* —0.0086= 09385  0.0070  0.0014" & 5
(0.0421) (0.0419)
6 0.9356 —0.0022* —0.0100* 0.9378  0.0070  0.0008 10
(0.0429) (0.0421) 0
7 0.9379 —0.0012* —0.0078= 0.9371 —0.0024**  0.0000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(0.0418) (0.0423) Constrained policy
8 09390 —0.0008  —0.0066* 0.9395  0.0002  0.0024*
(0.0414) (0.0412)
9 0.9398 —0.0016* —0.0058 09392  0.0012*  0.0022* ularly evident in the case of the centrality interaction
(0.0411) (0.0415) structure. Figure 2 indicates that, with such a struc-
10 (8'3383) —0.0004  ~0.0042 (g'gigg) —0.0001 00009 ture, a firm ends up at local peak, comprising an
» 099418 00002 —0.0038* 09381 00009  0.0011° }nternal.ly consistent set of choices across all 15 pol-
(0.0395) (0.0416) icy variables, roughly one-half of the time when a
12 0.9416  —0.0020* —0.0040** 0.9373 —0.0023*  0.0002 more strategic policy is misspecified, but does so rela-
(0.0402) (0.0421) tively rarely when less strategic policies are misspec-
13 ?6909349326; ~0.0014% - ~0.0020 (g'gi?g) 0.00187 0,005 ified. A reasonable inference, explored more fully in
14 0.9450 —0.0006 —0.0006  0.9377  0.0007  0.0007 the fou‘?w"_lp a.naly51's,. is that When a hlghl}’_ cen-
(0.0387) (0.0421) tral policy is misspecified the firm builds an inter-
15 0.9456  0.0000  0.0000 09371  0.0000  0.0000 nally consistent set of policy choices compatible with
(0.0385) (0.0424)

*p < 0.01, **p < 0.005; standard deviations are provided in parentheses.

fairly systematic evidence of such a misspecification
penalty. Why might the preset mismatch of lower-
order policy choices be comparatively more damaging
to fitness levels under the centrality structure? Note
that less central variables not only do not constrain
or substantially influence the payoff of many other
choices, but they themselves are not greatly depen-
dent on other policy choices. Being dependent on
other policy choices facilitates mitigating shifts in pol-
icy variables other than the one that is preset—which
there is reduced possibility of undertaking for less
central choices.

Consistent with this effect, we see in Figure 2
that firms operating under the constraints of legacy
misspecifications often fail to end up with a pol-
icy configuration that would, from an unconstrained
perspective, be internally consistent, i.e., constitute a
local peak. (Furthermore, the configurations that do
constitute local peaks are, on average, not particularly
close to the global optimum: the average Hamming
distance, or number of variables whose values differ
across such local peaks and the global optimum, is
approximately 4.) The divergence between final con-
figurations and (unconstrained) local peaks is partic-

this misspecification. That is, the other policy choices
that are identified through local search form a con-
sistent configuration of policies that are, in some
sense, anchored by this misspecified policy. In con-
trast, when a less strategic policy is misspecifed, it
seems that the firm frequently “accepts” this misspec-
ification in a sense and builds a policy configura-
tion that does not correspond to a local peak in the
landscape.’

As a further robustness test of this result, a supple-
mental analysis was run in which the optimal config-
uration was identified subject to the constraint that
one of the 15 policies is misspecified. This analysis
helps clarify the extent to which the identification of
a local peak is driven by the process of local search
from a given starting position versus the global prop-
erties of the performance surface. The percentages of
local peaks in this analysis turn out to be nearly iden-
tical to those in the previous analysis, ranging from a
value of 56% when the most strategic policy is mis-
specified to merely 5% when the least strategic pol-

15 All of the policy configurations that are reached, by definition,
correspond to a local peak in the partial landscape consisting of the
14 policies that are free to vary. The issue addressed in Figure 3
is whether such a configuration corresponds to a local peak in full
space of 15 policy variables.
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icy is misspecified.'® Furthermore, although the firm
could always reduce the Hamming distance to the
global optimum—the number of variables set to dif-
ferent values across the final policy configuration and
the global optimum—to just 1, the firm does not, as
a second-best, generally seek to minimize such dis-
tance. The Hamming distances between final policy
configurations and the global peak range from an
average value of 3.2 when the most strategic policy is
misspecified to 1.2 when the least strategic policy is
misspecified.

The role of relatively peripheral policy variables in
this regard bears repeating. To the extent that a focal
policy that is misspecified depends on or influences
other policies, compensating changes in these other
policies can be made that facilitate a distinct but nev-
ertheless reasonably effective constellation of policies.
In contrast, when a relatively peripheral policy is mis-
specified under the centrality structure, the specifica-
tion of the N — 1 policy variables identified through
a process of tactical adjustment tends not to corre-
spond to a local peak (i.e., a consistent set of policy
choices). Rather, the firm in some sense accepts this
misspecification.

4.3. Modes of Interaction: Influence, Dependency,
and Autonomy

Table 3 and Figure 2 taken together suggest that the
misspecification of a highly dependent policy does
not impose the same performance costs as the mis-
specification of other variables. Indeed, there appears
to be a certain robustness associated with dependent
variables (see Siggelkow 2002b for a similar argu-
ment). But our analysis of interaction structures up
to this point somewhat conflates the role of influence
and dependency in that policies that are relatively
less dependent also tend to be less influential.”” In
Table 4, we consider an extreme adjacency matrix that
disentangles these effects. We specify the first five pol-
icy variables to be influential with probability 1 and
not dependent with probability 1 as well (ie., r=1
and p =1). Analogously, we specify policies 6-10 as
being influential with probability 0 and dependent
with probability 1 (i.e., ¥ =0 and p =1). The remain-
ing five policies (policies 11-15) are treated as being
autonomous (i.e., p=0).

16 However, in contrast to the outcome under the process of local
search, when a constrained optimum is calculated, the performance
achieved when a more strategic policy is misspecified is statistically
inferior to the performance achieved when a less strategic policy is
specified.

17 Specifying the interaction structures solely by varying p*’ and p°©
would not eliminate such confounding effects. Variation in these
parameters affects not only influence and dependency but also the
level of autonomy or interdependence. Thus, the analysis in this
section is an important supplement to the prior analysis but not a
substitute.

1649
Table 4 Extreme Adjacency Matrix
Constraints of history
Fitness with
Policy Final Fitness —avg. Fitness —avg. Fitness — avg. partial
misspecified  fitness influence dependent independent  activity map
Influential
1 0.9212 —0.0150** 0.0019* 0.9590
(0.0483) (0.0454)
2 0.9216 —0.0146** 0.0023** 0.9692
(0.0480) (0.0423)
3 0.9222 —0.0141* 0.0029** 0.9802
(0.0480) (0.0367)
4 0.99214 —0.0148** 0.0022** 0.9929
(0.0483) (0.0227)
5 0.99219 —0.0144* 0.0026** 1.0000
(0.0479) (0.0000)
Dependent
6 0.9368  —0.0152* 0.0175* 1.0000
(0.0439) (0.0000)
7 0.9356  —0.0139* 0.0163* 1.0000
(0.0454) (0.0000)
8 0.9365  —0.0148* 0.0172* 1.0000
(0.0440) (0.0000)
9 0.9364  —0.0147* 0.0171* 1.0000
(0.0441) (0.0000)
10 0.9359  —0.0142* 0.0166** 1.0000
(0.0446) (0.0000)
Independent
1 0.9194  —0.0023** —0.0169* 1.0000
(0.0510) (0.0000)
12 0.9193  —0.0023** —0.0169* 1.0000
(0.0509) (0.0000)
13 0.9196  —0.0021** —0.0167* 1.0000
(0.0612) (0.0000)
14 0.9196  —0.0021** —0.0167* 1.0000
(0.0633) (0.0000)
15 0.9186  —0.0030** —0.0176* 1.0000
(0.0645) (0.0000)

*p < 0.01, *p < 0.005; standard deviations are provided in parentheses.

This stylized interaction structure allows us to tease
out the underlying forces in the results we observe
with the hierarchical and centrality interaction pat-
terns. Table 4 confirms that constraining one of the
“influential” variables to differ from the global max-
imum has a profound effect on the relative fitness
level that is achieved. Somewhat more surprisingly,
constraining the autonomous variables to differ from
the global optimum has a larger impact than con-
straining the seemingly more important “dependent”
variables. The reason for this is that the presence
of dependency allows for the possibility of substi-
tuting or compensating changes in policy variables.
Although tightly linked interaction patterns have gen-
erally been viewed as fragile, they also allow, through
equifinality, for a certain robustness. In contrast, when
an autonomous variable is misspecified, this has no
negative implications for other choice variables; at the
same time, however, there is no opportunity to com-
pensate for any misspecification.
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The parsing out of effects in this stylized adjacency
matrix also offers somewhat greater room for opti-
mism about the power of high-level strategy making.
The final column in Table 4 tracks normalized fitness
levels as an increasing number of variables are preset
to match their values at the global maximum, with the
remaining variables identified through a process of
local search. The results suggest that it is sufficient to
specify the purely influential variables correctly and
then to follow up with a process of local search. The
dependent variables are likely to be correctly speci-
fied if the influential variables are set to the global
optimum, and the autonomous variables, as noncon-
textualized choices, can readily be set at their opti-
mum value via a process of local search. In that sense,
at least, the intuition of the sufficiency of “grand
strategy making” and the presumption that operating
details can safely be left unspecified are supported.
It is the intertwining of influence and dependency—
particularly with the centrality interaction structure—
that prevents such top-level strategy making from
proving sufficient.

5. Conclusion

Some choices condition other choices. This condition-
ing may be synchronic, as implied by the activity sys-
tems approach, or diachronic, as in models of path
dependence and commitment. This paper was moti-
vated by the idea that it would be useful for the strat-
egy field to move beyond rhetorical appeals regarding
the relative importance of one set of “linkages” or
another. This task will require both more carefully
specified theoretical models that embody both sets
of linkages and empirical work that is fine-grained
enough to permit exploration of the nuances of choice
structures (cf. Siggelkow 2002a). The current analysis
is clearly targeted primarily at the former goal.

We find, most broadly, that it is useful to distin-
guish the degree to which choices are autonomous,
influential, or dependent. Autonomous (or decompos-
able) choices are choices whose optimal resolution
is independent of the firm’s other choices and can
therefore be made on the basis of standalone tech-
nical considerations. Highly influential choices are
choices whose resolution impacts the optimal resolu-
tion of a great number of other choices and can be
thought of as strategic: they are particularly important
to get right. And finally dependent choices are tactical
choices that can involve the mitigation of the effects
of (misconceived) strategic choices as well as efforts
to seek out incremental advantages. This very basic
operational characterization is worth elaborating.

Autonomous choices disconnected from others are
the ones for which the notion of universal best prac-
tices makes some sense. Note that although getting

these choices wrong does not, by definition, alter
the payoffs from other choices, it is also true that
these kinds of choices, if wrong, cannot be compen-
sated for by dependent choices. Still, such choices
can be made independent of an overarching choice
of strategy and therefore have the quality of opera-
tional policies (Porter 1996). And similar considera-
tions sometimes also apply to groups of choices, as
in the (nearly) decomposable systems originally high-
lighted by Simon (1962) and recently analyzed in the
business context with an NK approach by Ethiraj and
Levinthal (2004) and Rivkin and Siggelkow (2007)
among others.

Choices that are not autonomous or decomposable,
in contrast, should not be treated symmetrically—
as they are by the canonical NK model—as having
equal potential to be influential. Our examination of
examples suggested that it is important to recognize
both the multiplicity of choices (or themes) and the
fact that some of them matter more than others. Our
modeling effort set up two cross-sectional alternatives
to the random interaction model of NK landscapes
that encompassed variations in individual choice ele-
ments’ interactions with others: hierarchy and central-
ity. The initial analysis of strategy making confirmed,
under the assumption that choices are of symmet-
ric weight but asymmetric in their interactions, that
correctly prespecifying policy choices that are more
strategic provides more leverage than correctly pre-
specifying less strategic or arbitrary policies. How-
ever, the requirements as to the proportion of policy
choices that need be specified correctly to reach the
global optimum remain daunting.

The results regarding the constraints of history—
preset mismatches rather than matches—also revealed
the salience, although here in a negative sense, of
more strategic variables under the hierarchical interac-
tion structure. However, with importance determined
by degree of centrality, more puzzling results were
observed. The subsequent analysis of the pure effects
of influence, dependency, and autonomy helped to
unpack this puzzle. In characterizing the initial matri-
ces of interaction, as we varied the parameter r, we
changed both the likelihood that a policy is influen-
tial and, conversely, the degree to which it is depen-
dent. As a result, the interaction structures depicted
in Figures 1la and 1b, for example, had a more com-
plex structure than may have been apparent at first.
Separating out the effects of influence, dependency,
and autonomy brought dependent choices—choices
that are more influenced than influential—into par-
ticularly sharp focus. The modeling effort indicated
that such choices can afford two very distinct types
of benefits: enabling the more effective pursuit of the
strategy implied by higher-order choices by align-
ing with them, and mitigating the effects of higher-
order handicaps. In other words, dependent choices
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can be either advantage seeking or disadvantage mit-
igating, although the first role is the one that is typ-
ically stressed in the literature on strategy. The kind
of policy configurations associated with disadvantage
mitigation often do not correspond to (unconstrained)
local peaks in the performance landscape. By implica-
tion, the standard strategic test of internal consistency
at a point in time cannot be applied independent of
dynamic considerations, because optimal adjustment
over time to constraints may result in what looks like
an internally inconsistent set of choices from a purely
static perspective.

To conclude, strategic positions unfold over time.
The impact of these temporal or diachronic linkages
is importantly mediated by the presence of cross-
sectional or synchronic linkages. The conjunction of
the synchronic and the diachronic greatly increases
the complexity of strategy formation. This paper
has made a start at offering insights into their joint
consequences.

6. Electronic Companion

An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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