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The classic trade-off between exploration and exploitation reflects the tension between gaining new information about
alternatives to improve future returns and using the information currently available to improve present returns. By

considering these issues in the context of a multistage, as opposed to a repeated, problem environment, we show that
exploratory behavior has value quite apart from its role in revising beliefs. We show that even if current beliefs provide
an unbiased characterization of the problem environment, maximizing with respect to these beliefs may lead to an inferior
expected payoff relative to other mechanisms that make less aggressive use of the organization’s beliefs. Search can lead to
more robust actions in multistage decision problems than maximization, a benefit quite apart from its role in the updating
of beliefs.
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1. Introduction
The exploration and exploitation trade-off has been a
central part of the discourse in organization studies stem-
ming from March’s (1991) original work and has a long
history in decision sciences (DeGroot 1970), computer
sciences (Holland 1975), and economics (Radner and
Rothschild 1975). Decision makers need to make trade-
offs between gaining new information about alterna-
tives to improve future returns and using the information
currently available to improve present returns (March
1991). Excessive exploitation of one’s current knowl-
edge in an effort to maximize immediate returns may
yield an underinvestment in search and discovery and
the development of new beliefs. However, the explo-
ration and exploitation trade-off has been examined in
a particular class of problem environments, where the
choice situation is repeated over time and, critical to our
present argument, an observed performance outcome is
associated with each decision.

We consider the merit, and limits, of exploitive behav-
ior in the context of multistage decision making in which
a given decision need not lead to any tangible outcome
but rather sets the stage for subsequent decision-making.
Our results highlight an important facet of the familiar
classic trade-off between exploration and exploitation.
While there is a clear understanding in the management
literature that exploitation of one’s current beliefs may
be dysfunctional in the long run, we show that, in a

multistage problem, exploitation can lead to an immedi-
ate decline in payoffs and not just a possible long-run
penalty from insufficient learning about latent alterna-
tives. In contrast, a decision policy that is mildly, but
not strongly, exploitative is superior to an explicit max-
imization of perceived payoffs even in the near term.

As broad context for understanding our results, it
is important to recognize that any conscious choice
is logically preceded by another activity: representa-
tion and abstraction. Such representations or abstractions
typically capture simplified features of the real-world
problem in question and describes abstract relations of
objects in the form of engineering diagrams, flow charts,
chemical formulae, etc. (Simon 1966). These abstrac-
tions are “small worlds,” structures that are built on a
variety of simplifying assumptions (Savage 1954). Seen
from this perspective, analytical efforts to identify the
optimal solution to a decision problem, only identify the
optimal solution to a model of that situation (Einhorn
and Hogarth 1981). Decision makers choose and act on
a representation of a real-world problem. When deci-
sion makers’ representation does not align well with the
real problem, as is likely in a multistage decision pro-
cess, exploitation of the existing partial representation
leads to lower payoffs on average than a less exploitative
strategy in which perceived payoffs are not maximized.
Less exploitative strategies are shown to lead to a more
robust approach to problem solving in a multistage set-
ting. Furthermore, this misalignment is not a question of
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biases, but rather is a reflection of the fact that a rep-
resentation may provide only a partial characterization
of the problem. As such, this inferiority of exploitation
should not be an anomalous property in complex prob-
lem environments.

This finding supplements our current understanding of
the classic trade-off between exploration and exploita-
tion. Exploration is frequently associated with revis-
ing beliefs and changing one’s underlying model of
the problem environment (Levinthal and March 1993,
March 1991, Holland 1975). However, we show that the
robustness of exploration in a multistage, as opposed
to repeated, problem does not depend on the updating
of beliefs; instead, it depends on the identification of
“clues” or signals of value associated with intermedi-
ate steps in the multistage problem. While the classic
trade-off between exploration and exploitation hinges
on the distinction between making full use of current
beliefs and enhancing one’s understanding to make bet-
ter choices in the future, we show that, in a multistage
setting, even in the absence of any updating of beliefs,
a more exploratory decision rule can be advantageous.

Our finding further points to a possible critique of
maximization approaches. The question of whether indi-
viduals choose among actions so as to maximize their
payoff has been a long-standing one in the social sci-
ences (Savage 1954, Simon 1955, Friedman 1953).
Empirical research on decision making has documented
substantial deviations from optimal benchmarks, and cri-
tiqued the assumption of maximization on the grounds of
behavioral realism (Simon 1955, Kahneman and Tversky
1973, March 1978). We argue that, to examine the nor-
mative validity of maximization as a choice mechanism,
it is first necessary to examine the specific mechanism
of representation. The way in which problems are for-
mulated has much to do with the quality of the solutions
that are found as the algorithms of choice applied to
these representations (Simon 1986). If the representation
captures faithfully the relevant features of the problem,
then maximizing choices with respect to this represen-
tation will yield optimal results in the actual problem
context. However, if the representation is not accurate,
then no such assurance exits. The efficacy of maximiza-
tion is therefore logically contingent on the model or
representation of the problem.

2. Solving Multistage Problems
As Simon (1990, p. 7) noted, “human rational behav-
ior is shaped by a pair of scissors whose two blades
are the structure of task environments and the compu-
tational capabilities of the actor.” Holding the compu-
tational capabilities of the actors constant, we explore
problem settings in which actors need to develop more
or less complex mental representations of their problem
environment (Thagard 1996), which then serve as the

basis of their choices. To make salient the role of actors’
representations of the environment, we focus on a class
of multistage decision problems, where the ultimate pay-
off is only realized after a series of intermediate stages.
In these settings, actions and outcomes are separated
across stages. As such, the consequence of an action at
one point may not be felt until many stages later.

To illustrate the challenge in a multistage problem,
consider an individual learning how to solve Rubik’s
Cube (i.e., get all sides of a multifaceted cube to be of
the same color). In trying to do so, the individual faces
two challenges. First, no immediate objective informa-
tion is available about whether individual moves bring
the individual closer to the solution. Thus an individual
has to make appropriate moves without being informed
if they are good or bad. Second, even when the solution
has been found, it is seldom obvious whether specific
moves were good or bad. In particular, evaluating indi-
vidual moves often requires recognition of their long-
term implications. Yet, developing such understanding
is difficult even with repeated experience. For example,
most novices believe that getting one side correct is a
useful subgoal. However, experts know that a move that
achieves this state is not a step toward the ultimate goal
and may constitute movement away from it.

This problem setting is characteristic of many organ-
izational decision-making contexts. The very notion of
strategic decisions revolves around the fact that this class
of decisions has longer term consequences (Andrews
1965). In an organization, activities are often sequen-
tially interdependent (Thompson 1967), where choices
made in earlier stages influence the return to choices
made in later stages. For instance, consider the product
development efforts in an organization. A long sequence
of activities has to take place, ranging from identifying
a promising technology, allocating resources to develop-
ment, testing of prototypes, large-scale manufacturing to
marketing of the final products. This process often takes
months, if not years, before market response is known.
During the process, even though various indicators may
be used to evaluate progress, there is no guarantee that
these indicators are sufficiently correlated with the final
outcome. In such a setting, learning what might con-
stitute more or less favorable choices by an upstream
activity is often confounded by the fact that the outcome
of those choices are mediated by choices made in down-
stream activities and vice versa. Earlier activities “set the
stage” for later ones. For instance, what the marketing
department does to encourage the sales of a new prod-
uct is very much enhanced or constrained by the prior
initiatives of the R&D group, and the sort of product
development efforts that prove fruitful may depend on
the marketing initiatives that lie further downstream.

Consider further the innovation journey in biotechnol-
ogy. Even after a drug candidate has been identified,
a lengthy process of trial and error is still needed to
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determine whether it is safe or effective for humans.
A long sequence of downstream activities related to tox-
icology, process development, formulation design, clini-
cal research, biostatistics, regulatory affairs, and finally
marketing needs to unfold before the first product rev-
enues can be realized (Pisano 2006). This lengthy pro-
cess not only takes about a decade but also carries with
it significant risks, because historically only one out of
6,000 synthesized compounds makes it to the market,
and only 10%–20% of drug candidates beginning clini-
cal trials are, ultimately, approved for commercial sale.

In both examples, there are two distinct temporal proc-
esses at work. One process is the standard process of
feedback and experiential learning as “trials” are repeat-
edly carried out across time, leading to the revision
of beliefs and improvement in performance and learn-
ing (Argote 1999). The other temporal process, a much
less discussed one, is associated with a multistage deci-
sion. Decisions at one stage set up what might consti-
tute more or less attractive actions at a subsequent stage.
The processes, of course, may be linked. For instance,
even though the idiosyncratic search for a specific new
drug (e.g., a specific ulcer medication) is unlikely to be
repeated exactly again, general lessons for how best to
organize the multistaged drug discovery efforts are still
learned. How best should the scientific teams be organ-
ized? What level of testing should be carried out before
the drug is taken to full-scale clinical trials (clearly, there
are regulatory constraints here as well as firm choices)?
To what degree should a market analysis inform the
selection among candidate research efforts? What are
the best approaches to market introduction (direct adver-
tising, linking with key professionals, etc.)? These are
examples of the general lessons that can be learned in a
multistage decision process.

The challenge in this class of multistage problems,
known as the credit assignment problem in artificial
intelligence (Minsky 1961, Samuel 1967, Holland 1975),
is how to develop representations of the problem or mile-
stones (Block and MacMillan 1985) to evaluate actions
that may not have immediate outcome consequences.
From a rational choice perspective, this challenge is cap-
tured by a dynamic programming framework (Bellman
1957). Formally, a set of dynamic programming tech-
niques can be used to specify optimal action at each
point in time, taking fully into account the potential
stage-setting value of each action. In this way, an opti-
mal path can be derived recursively. However, this for-
mal approach poses formidable and often overwhelming
computational burdens for their solution (Simon 1992).
Even if the full decision tree can be carefully specified,
computation of the dynamic programming solution can
be infeasible as the space of possible futures expands
exponentially with possible actions. Bellman (1957)
himself acknowledges this as the “curse of dimension-
ality.” For instance, Deep Blue, the first computer chess

program to win a chess game against a reigning world
champion in 1997, does not push through the full space
of possibilities and identify an optimal action. Despite
a computing power capable of evaluating 200 million
positions per second, Deep Blue is still dwarfed by the
enormous, though finite, state space in chess. There are,
for example, more than 288 billion different possible
positions after four moves. Rather, Deep Blue employs a
sophisticated heuristic known as “selective deepening,”
searching moves deemed interesting or promising far
more deeply (Hsu 2002). In short, rational maximization
solutions to multistage problems are at best elusive and
unrealistic.

However, with a few notable exceptions (Brehmer
1995, Gibson et al. 1997, Sterman 1989), behavioral
models of learning generally assume immediate, though
possibly misleading, feedback about the consequences of
actions (Cyert and March 1963; Lave and March 1975;
Levinthal and March 1981; Levitt and March 1988;
Herriott et al. 1985; Lant and Mezias 1990, 1992; Lant
1994; Roth and Erev 1995; Levinthal 1997; McKelvey
1999; Gavetti and Levinthal 2000; Rivkin 2000). In these
feedback-based conceptions of learning, the primary
mechanism is a process of reinforcement learning in
which actions that lead to favorable outcomes are rein-
forced. Most real-life contexts, however, depart from this
setup. In settings where there are multiple stages, as are
modeled here, feedback is not immediately available.
This implies that learning based solely on reinforcement
or feedback (also known as hill climbing) would not
prove effective (Denrell et al. 2004).

To examine the classic trade-off between exploration
and exploitation in a multistage setting, we design a
series of simulations that capture some of the basic prop-
erties of such contexts. In particular, we introduce a
mechanism by which representations can be modeled in
a multistage task, which is both behaviorally plausible
and can capture the long run as well as immediate con-
sequences of actions. In our setup, we first tune the level
of accuracy and completeness of these representations
by varying the length of experiential learning. We then
examine the performance implications of exploiting or
maximizing with respect to these beliefs. As such, while
the specific mechanism of developing representations is
an important component of our model (detailed in §3.2),
this mechanism is nothing more than a tool to endow our
organizations with a set of more or less sensible beliefs
about the underlying payoff structure, and our results are
not contingent upon the specifics of this mechanism.

3. Simulation Analysis
3.1. Task Setting
We model a multistage task as a performance landscape
in the form of an N -dimensional landscape or hypercube
(cf. Kauffman 1993, Levinthal 1997, Bruderer and Singh
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1996). Each point in such a surface consists of a vector
of choices associated with the N -dimensions. An N + 1
dimension consists of a measure of performance associ-
ated with the vector of N choices. We represent a vertex,
or state S, as an N -element binary string, in which each
element can take on the value of zero or one. With any
given N , there are 2N possible states. For instance, if
N is set to 2, then there are 22 possible binary strings
(namely, 00, 11, 01, 10). Associated with each binary
string of choice configurations is a payoff that spec-
ifies the corresponding outcome feedback. An agent’s
task is to identify a sequence of actions that maximizes
their payoffs over the long run. Search is local, where
an action consists of flipping one element in the binary
string from zero to one or vice versa.

To simulate a multistage problem, we consider a land-
scape in which only a subset of choice configurations
yields a nonzero payoff. In other words, agents will
find zero payoffs in all states except a selected few.
To maximize long-term payoff, agents need to identify a
path from an arbitrary starting position in the landscape
to these selected configurations with nonzero payoffs.
These states constitute goals or peaks in the landscape,
while other states can be thought of as more or less
useful antecedent steps toward them. Furthermore, these
choice configurations carry differential nonzero payoffs.
A reasonable measure of performance in this setting
is whether agents learn to walk to peaks with higher
rewards, because higher payoffs are only attained when
agents identify paths from their starting points to the
higher peaks.

We consider a simple scenario in which the landscape
has two nonzero peaks, with one peak having a substan-
tially higher payoff than the other. Visually, this problem
can be represented by a flat surface with only two spikes,
representing two states corresponding to distinct com-
binations of policy choices (Bruderer and Singh 1996).
The challenge is how to develop representations of the
problem to evaluate actions that may not have immediate
payoffs.

In the next section, we detail a specific mechanism
by which representations can be modeled. While the
specifics of this mechanism are an important compo-
nent of our model, we use it mainly as a tool to vary
the accuracy and completeness of an organization’s
representation.

3.2. Evolution of Representations
To carefully model the mechanism by which a represen-
tation might develop, we build on one mechanism known
as Q learning, in which a representation, or value func-
tion, evolves through repeated experience (Kaelbling
1993, Watkins 1989, Sutton and Barto 1998, Denrell
et al. 2004).1 This model extends the standard mod-
els of reinforcement learning (cf. Lave and March 1975

and others above) to allow actors’ existing represen-
tation of the task environment to serve as an alter-
native basis for reinforcement learning (Samuel 1959,
Sutton and Barto 1998). It explicitly simulates the evo-
lution of representations by combining elements from
both dynamic programming and feedback-based learning
models. In short, dynamic programming equations are
converted into simple updating rules, and strategies that
produce success over time are reinforced more than
those that do not produce success over time. This spe-
cific learning mechanism was initially developed in the
field of machine learning as a means to identify solu-
tions to optimal control problems (Sutton 1998, Sutton
and Barto 1998). It has gained recent recognition in psy-
chology (Berthier et al. 2005, Sutton and Barto 1981)
and has produced results consistent with the robust prop-
erty of the “law of effect” (Thorndike 1898), which
has been observed in a large literature within experi-
mental psychology. Recently, support has been found in
neural science (Daw and Dayan 2004, McClure et al.
2003, O’Doherty et al. 2004) following a discovery
in the primate ventral tegmental area (the front mid-
brain) of neurons whose firing closely resembles the
predicted patterns (Schultz et al. 1997, Montague et al.
1996).

First, we model representation in a very simple styl-
ized manner by a state action value function known
as a Q(s� a) function (Watkins 1989), following the
Q-learning method. A Q(s� a) function captures an
agent’s beliefs about the immediate reward for taking
action a in state s, as well as the long-run consequences
of that choice. In our model, agents search locally, where
an action consists of flipping from zero to one or vice
versa. Given N = 10, we have 11 possible actions or
columns: 10 actions to flip each one of the N elements
and the 11th action being staying put. A Q(s� a) func-
tion is implemented as a simple look up table with rows
corresponding to all possible states (2N ) and columns
corresponding to all possible actions (N + 1). As such,
our state action space is a table with 1,024 rows and
11 columns, resulting in 11,264 cells. Each cell in this
table contains a corresponding a Q(s� a) value, which
captures agent’s beliefs about how much value can be
generated from taking action a starting from state s.

Second, following Samuel (1959), we assume that an
agent updates this representation successively over time,
gradually uncovering the underlying problem structure
(Kaelbling 1993, Watkins 1989, Sutton and Barto 1998,
Denrell et al. 2004). Over time, the table is updated to
reflect agents’ evolving knowledge about the underlying
problem. In particular, whenever a peak is found, the
immediately preceding state and action pair (s� a) is pos-
itively updated because it has “led” to the peak. Each
episode concludes with the agents walking to either the
higher or lower peak. During subsequent episodes, this
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particular (s� a) serves as a useful stepping stone or sub-
goal to the goal states such that any other (s� a) pair,
which “leads” to this (s� a) is also positively updated. In
this way, “credit” is successively assigned to more and
more distant (s� a) pairs.

Specifically, agents update their current representa-
tions of Q(s� a), by weighting their beliefs about the
current state s as well as future state s′ by parameters �
and � as follows:

Q�s� a	← �1−�	Q�s� a	+�
R+�Q�s′� a′	�
 (1)

R represents the immediate payoffs from taking action a
starting from a state s. The parameter � weights the
importance of Q(s′� a′), the value of taking an appropri-
ate action a′ from a future state s′. It regulates the degree
to which the prior state action pair, Q(s� a), gets “credit”
for the position (i.e., state s′) that it has created. Even if
the immediate payoff is zero, the value of the prior state
action pair, Q(s� a), can still be augmented so long as
Q(s′� a′) is nonzero. The parameter � represents weights
given to existing beliefs Q(s� a), in relation to Q(s′� a′).
We set � at 0.8 and � at 0.9.

Initially, all Q(s� a) values are specified to be zeroes
or uninformed. This “flat” prior belief structure is cho-
sen because it does not discriminate among alternative
state action pairs. As such, in the first trial, agents will
choose actions randomly. Suppose that an agent has car-
ried out action a, which was identified as desirable based
on the actor’s current beliefs. Taking this action, the
agent arrives at a new state s′. This new state may or
may not provide some immediate payoff R. Regardless
of whether an immediate reward is received, this new
state s′ is now a launching point for further actions. In
other words, the current state s should be given some
“credit” for helping to create a valuable future position.
It follows that the perceived value of current state s is
the sum of two terms: (1) an immediate payoff R and
(2) perceived values of Q(s′� a′), where s′ is the future
state that can be reached from s. If Q(s′� a′) is positive,
then an action that leads an agent from current state s
to s′ must be valuable as well. When a peak is found
(by chance), however, R becomes positive. The immedi-
ately preceding state action pair, (s� a), will therefore be
positively updated and the action responsible for bring-
ing the agent from state s to the peak will also be rec-
ognized as valuable. In subsequent trials, whenever the
agent comes to this particular state s again, she knows
that by taking that particular action a, she will find the
peak as before. In this way, updating of the agent’s rep-
resentation occurs not only when the solution is found,
but also whenever the agent reaches the positively val-
ued Q(s′� a′) identified in the earlier trials. Over repeated
experience, as distant state action pairs are discovered
and updated positively, more and more long-term con-
sequences of actions are compounded into the Q(s� a)
function.

This evolving Q(s� a) function serves as the basis of
agent’s actions. Because there are multiple actions avail-
able at each state, we need to tune the extent to which
agents are sensitive to the different magnitudes of dif-
ferent actions available at the same state. On the one
hand, agents can “maximize” by always choosing the
action with the highest Q(s� a) value. On the other hand,
agents can explore by choosing an action that is “good,”
yet not necessarily the “best.” Clearly, these alternative
choice rules represent two extremes along a continuum,
which varies along the extent to which an agent is sensi-
tive to any differences in Q(s� a) values associated with
the various possible actions in a given state s. While
agents who maximize are very sensitive to any differ-
ence in Q(s� a) values, agents who randomize choose
equally among all actions and decide independently of
the Q(s� a) values. To tune this sensitivity, we model
the probability of choosing a given action using a deci-
sion rule developed by Luce (1959) that has been used
widely in estimating learning models (cf. Camerer and
Ho 1999, Gans et al. 2007, Weber et al. 2004). Choice is
highly structured and heuristically guided by the current
Q(s� a) as follows:

exp
Q�s� a	/��
∑n

a=1 exp
Q�s� a	/��

 (2)

A single parameter � (from 0 to infinity), or “tempera-
ture,” regulates how sensitive the probability of choos-
ing a given action is to the estimated Q(s� a) values of
alternative actions in the corresponding state. It oper-
ates by differentially choosing among actions, favoring
those with higher Q(s� a) values, which are perceived to
be more attractive. For any positive � value, the prob-
ability of selecting an action with a higher Q(s� a) is
greater than the probability of selecting an action with a
lower Q(s� a). In addition, the higher the value of � , the
probability of a given action being chosen will be less
sensitive to the relative differences in the Q(s� a) values.
Actions will be chosen more uniformly and an action
with lower Q(s� a	 values still has a positive probabil-
ity of being chosen. Agents with high � essentially do
not take their own Q(s� a) value very seriously, and fre-
quently depart from what they believe to be the optimal
behavior. On the other extreme, small � values cause
choices to become very sensitive to the estimated values
of the various alternative actions. Agents with lower �
adhere closely to their representations, carrying out the
best actions as dictated by their Q(s� a) values. In the
limit, as � → 0, if an action has the highest Q(s� a), it
will be chosen with probability 1. As such, a lower �
value is equivalent to greater exploitation of one’s cur-
rent beliefs, while a higher � generates behavior that is
more disconnected from one’s beliefs. In short, a high �
value corresponds to a higher degree of search and vice
versa.2
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3.3. Structure of Simulation
Because choice is based on an evolving representation,
it is natural to design our simulation as a function of
time. Early on in the simulation, organizations are pre-
sumed to sample broadly and to try alternative actions.
This can be seen as a “learning phase” of trial and error
search, as organizations identify attractive actions and
develop a better representation of the underlying prob-
lem structure. During the learning phase, organizations
explore and gradually build up their representations. As
such, the longer the learning phase, the higher the qual-
ity of the representations or beliefs. We use the length
of the learning phrase as a tool to tune the degree of
accuracy and informativeness of the organization’s rep-
resentation of the problem environment. At the end of
this “learning phase,” we contrast the efficacy of two
alternative choice strategies: one in which agents max-
imize or exploit by locking into a preferred strategy
and the other in which agents act in a way less con-
strained by their beliefs about what constitutes appro-
priate behavior.3 In this latter case, agents retain some
degree of skepticism toward their own representations.
As compared with fully exploiting their current beliefs,
their choices are “softened” as they continue to search
by deviating from perceived optimal actions. They are
therefore less aggressive in using their current repre-
sentations. In keeping with prior literature (Sutton and
Barto 1998), we label this alternative strategy as “soft-
max.” In other words, agents follow either maximization
or softmax as choice strategies. Exploration during the
learning phase is approximated by setting � to 20. At the
end of the learning phase, maximization is approximated
by setting � to 0.1 and “softmax” is implemented by
keeping � at the same level of 20 as before. With this
formal structure, we now examine the near-term perfor-
mance implication of exploitation by varying systemati-
cally the length of the “learning phase.”

The results in the following analysis are based on
the average behavior of organizations more than 2,000
independent histories of search. Each “history” com-
prises a “learning phase” of varying number of episodes
and a subsequent episode in which we contrast the per-
formance of organizations following the two alternative
choice strategies.

3.4. Results
Recall that, in our problem setting, choices and out-
comes are separated across time. Even though most
actions are not associated with any immediate payoffs,
they constitute more or less useful antecedent steps
toward the two peaks. Furthermore, higher payoffs are
only attained when organizations find a sequence of
actions that leads to the higher, rather than lower peak.
To examine the implications of alternative choice strate-
gies, we measure performance by simply whether orga-
nizations learn to walk to peaks with higher payoffs.4

Figure 1 Performance Implications of Two Alternative Choice
Strategies
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In Figure 1, we contrast the number of times the
higher peak is found by organizations that follow either
“maximization” or “softmax.” Performance is measured
after the end of the “learning phase,” which varies
from 50 to 350 episodes. For instance, after 50 learning
episodes, organizations carry out different choice strate-
gies based on their representation developed in these
50 episodes. If the length of the learning phase is longer,
agents are allowed more episodes to experiment and
develop their representations, which then serve as the
basis of their choice.

In Figure 1, we see that maximization systematically
under or over performs relative to the baseline bench-
mark of “softmax,” depending on the length of the learn-
ing period. When the length of the “learning phase”
is relatively short, maximization underperforms “soft-
max.” As more time is allowed to learn, the gap in
performance narrows gradually. Eventually, maximiza-
tion outperforms the benchmark. In short, we observe
a maximization discount, followed by a maximization
premium. Thus, a positive relationship exists between
the relative efficacy of maximization and the length
of the learning phase. Again, the length of the learn-
ing phase is a mechanism simply to tune the accuracy
and informativeness of the organization’s beliefs. Thus,
these results indicate that with relatively poor or incom-
plete beliefs, fully exploiting one’s beliefs by making
choices based on what appears to be the best alternative
will tend to reduce payoffs compared to a less aggres-
sive use of these beliefs. However, with more informed
beliefs, the relationship reverses itself. For instance, we
see that after 50 episodes of learning, agents who max-
imize based on their representation identify the supe-
rior peak, on average, 73% of the time, while those
who follow “softmax” and continue to operate with a
higher � value, have an average performance of 82%.
After 150 episodes of learning, the size of this perfor-
mance discount reduces to 1%.5

What underlies this maximization “discount”? Given
that maximization is with respect to an evolving rep-
resentation, the efficacy of maximization may depend
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critically on the adequacy of the actor’s representation.
As such, it might be reasonable to expect that after even
50 episodes of exploration and experimentation, a deci-
sion maker’s model of the problem is still fragmentary,
inadequate, and perhaps misleading in important ways.

To see whether this is the case, we first need to
develop an intuitive understanding of the mechanism
by which a representation evolves in this problem set-
ting. As mentioned earlier, the problem landscape con-
sists of two spikes standing on a flat plain. Because
there are no local cues serving as feedback, organiza-
tions cannot rely on any local gradient to guide them
in their search for either one of the two peaks. To find
paths from arbitrary starting points to the peaks, organ-
izations have to construct their own gradient in their
representation. This is done by gradually recognizing
more and more antecedent states that were reached in
prior steps. Over time, two slopes form (one from each
peak) and cross each other at a dividing line, which can
be termed a watershed. Just as small streams flow into
different basins, depending on which side of an incline
they lie, organizations are guided toward different peaks
depending on the side of the watershed in their Q(s� a)
functions. More formally, the watershed characterizes all
states whose Q(s� a) values manifest a dominant ten-
dency to walk toward one peak or another. It effec-
tively divides the landscape into two separate regions of
attraction. The exact location of the watershed depends
on a set of parameters characterizing the nature of the
updating process (�, and �), the degree to which the
choice process corresponds to maximizing behavior (as
determined by �), and the relative magnitudes of the
rewards at the two peaks. For a broad set of these val-
ues, the resulting “watershed” appears at a point inter-
mediate between the two peaks, and, in particular, is
located more distantly from the higher peak. To achieve
the higher payoff associated with the higher peak, organ-
izations have to increase their odds of “walking” to the
left of the watershed.

To gauge the adequacy of an organization’s represen-
tation, we examine the average representation of 2,000
organizations to see whether it provides a correct direc-
tion for agents at each location. In Figure 2, we plot
the percentage of states in which the dominant beliefs
(i.e., maximum Q(s� a) value) dictate a tendency to step
toward one peak or the other at varying distance6 from
the lower peak. Because it takes time for organizations
to learn, and not all states may have been experienced,
organizations may not have learned anything around cer-
tain locations. As such, we also plot the percentage of
states with informed beliefs at various distances. We
define an organization’s beliefs about a state s to be
informed if there is at least one action a such that the
corresponding Q(s� a) value is strictly positive.

As seen in Figure 2, organizations’ average represen-
tation is incomplete in two important ways. First, a large

Figure 2 Quality of Representation at Various Locations in the
Problem Space
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percentage of states across all distances are still unin-
formed, as organizations either fail to learn anything in
those states or simply have not visited them. Thus they
will not choose intelligently in these states. Second, we
see clearly the presence of a watershed. In this case,
states that are five steps away constitute a critical divide,
because for these sets of states, the Q(s� a) function is
such that organizations are inclined to walk to the higher
peak rather than the lower peak. These states delimit the
watershed in the organization’s representations. When-
ever an organization arrives at this demarcation, or to
its right, it will be guided to walk toward the higher
peak, thereby attaining higher performance. However,
this also implies that representations could be potentially
misleading, especially if organizations find themselves
in states that fall on the opposite side of the watershed.
For instance, if we look at states that are two steps away
from the lower peak, the predominant tendency is still
to walk to the lower peak even after 50 episodes of
learning.

However, incompleteness in the underlying repre-
sentation cannot be the only explanation. Organiza-
tions’ performances seem to differ, depending on their
choice strategy, given the same incomplete representa-
tion. A more skeptical (or probabilistic) use of the same
incomplete model systematically leads to superior per-
formance, as indicated in Figure 1. To see a clearer
mapping between the model and performance, we sys-
tematically vary the starting positions of organizations
and contrast the performance of organizations, that fol-
low either “softmax” or “maximization” strategies in
Episode 51.

Given the same incomplete representation as reflected
in Figure 2, we find that the potential inaccuracy in rep-
resentations does not seem to pose much of a handi-
cap for organizations following the “softmax” strategy.
For instance, in Figure 3, when organizations are started
three steps away from the lower peak, agents’ own rep-
resentation indicates that by a nine to one margin that
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Figure 3 Performance Implications of Varying Starting
Positions in the Problem Space
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the appropriate course of action is to take an immedi-
ate step toward the lower peak. Given that this is to the
left of the watershed, it would seem that the majority of
organizations would walk to the lower peak. However,
this is not the case. Despite these somewhat “erroneous”
beliefs, more than 78% of the organizations manage to
walk to the higher peak.

The basic intuition behind this apparent paradox lies
again in the watershed imagery. Organizations can be
thought of as traveling in a space of possible paths to
two alternative solutions. The challenge is to find a path
that leads to the superior solution in the absence of
immediate feedback. Superior solutions offer stronger,
localized outcome feedback. As a result, they tend to
cast a broader shadow across representation of the prob-
lem space and push the watershed further away. On the
one hand, if organizations maximize and adhere strictly
to a given representation, they will be strongly guided
by their beliefs as to what actions to take. They will
be guided to the lower peak at least some of the time
given the presence of the watershed. In contrast, under
the alternative strategy “softmax,” some degree of exper-
imentation is preserved as organizations are less sensi-
tive to the relative magnitude of Q(s� a) values. As such,
they will be less constrained to carry out actions deemed
to be the best. Rather than locking into an apparently
attractive sequence of actions based on local fragmen-
tary knowledge, organizations may wander off to areas
where stronger signals of the superior solutions exist.
Even if they are at the unfavorable side of the water-
shed, organizations increase their odds of success as if
some imaginary “bridges” or shortcuts open access to
the higher peak. This serves to mitigate the potential
deficiency of an incomplete representation.

On the surface, such benefits of continual experimen-
tation, in contrast to maximization, resembles closely
the classic trade-off between exploration and exploita-
tion. Exploration by gathering further information, helps
avoid premature lock-in to inferior solutions (Levinthal
and March 1981, Levitt and March 1988) and may be

beneficial in the long run. Our “bridging” mechanism,
however, generates benefits in addition to, and independ-
ent of information gathering. To see this, we reexamine
performance under the same conditions as in Figure 3,
except that we turn off updating during the last episode.
In this way, no further information is gathered by search
and no new information is incorporated into the agent’s
existing representations. As expected, performance ben-
efits persist even in the absence of information gathering.
For organizations following the softmax choice strategy,
there is little difference in performance before and after
information gathering is stopped. Both curves remain
higher than that associated with fully exploitive behav-
ior. As argued before, a more probabilistic use of one’s
existing model generates randomness, which makes it
possible to bridge the “watershed” that divides organ-
izations’ mental landscape. This is distinct from the
mechanism of information gathering. As expected, per-
formance difference between “softmax” and maximiza-
tion disappears at a higher distance (i.e., as we get closer
to the higher peak). Therefore, search, at least in our
context, does more than generate new information about
the value of alternative states as in the classic trade-
off between exploration and exploitation. It changes the
starting point for the subsequent search process by build-
ing bridges or shortcuts that open access to the superior
solution. As such, while this sort of sampling process
also underlies the classic trade-off between exploration
and exploitation, search generates benefits from a more
robust use of existing (although imperfect) representa-
tions rather than from the updating of beliefs.

It is important to emphasize the flip side of maxi-
mization discount, however. For instance, in Figure 1,
from 250 episodes onward, we observe a maximization
premium. This is because after 250 episodes of learn-
ing, organizations have developed a sufficiently com-
plete model of the underlying problem. As such, acting
on such beliefs by maximization produces higher perfor-
mance, whereas organizations end up engaging in exces-
sive experimentation under the softmax approach.

3.5. Robustness Checks
The main result that maximization may lead to a perfor-
mance discount holds over a range of parameter settings.
To this point, we have used the length of the learn-
ing phase as a lever to manipulate the completeness of
the organizations’ representations. More generally, one
should consider the degree of difficulty associated with
the underlying search problem. For a given degree of
cognitive capabilities, the bounds of rationality will be
more or less constraining, depending on the difficulty of
the problem. If the problem is difficult, even sustained
exploration is unlikely to generate an accurate model,
and maximization becomes more hazardous. The con-
verse property holds as problem difficulty diminishes.
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Problem difficulty is contingent upon several param-
eters. In results not reported here, we find that as each
one of these parameters increases (while holding other
parameters constant), two things occur. First, the mag-
nitude of the maximization discount decreases. Second,
the point at which maximization becomes superior to
softmax sets in earlier, as problem difficulty increases.
Both results are expected and are consistent with our
main findings. First, problem difficulty is influenced
by N , the number of dimensions of the problem space.
The higher the number of dimensions, the more chal-
lenging is the problem, holding other things constant.
Second, difficulty is influenced by where organizations
start their adaptive search relative to the problem and
solutions. If one starts near a favorable solution, even
in a large problem space, the challenge of identifying
a sequence of steps to the solution is greatly mitigated.
Therefore, if organizations are started closer to the lower
peak, they face a more difficult problem of locating the
other higher peak.

In addition, the informativeness of one’s mental model
is a function of the temperature parameter � during
exploration. Given the same problem, higher � implies
a higher degree of search and, consequently, agents will
have developed more robust belief structures covering a
wider array of possible actions and states. However, as �
becomes very high (e.g., around 30), softmax approx-
imates random choice, and does not enable the organ-
ization to hold on to states or actions that have been
discovered to be valuable. They do not “act on” those
potentially superior beliefs. As a result, as � increases
beyond 30, maximization always outperforms softmax.

Furthermore, we find that our qualitative result is
also robust to an alternative performance measure that
incorporates search cost. Suppose that a cost is incurred
with each move, then the relevant performance measure
becomes the net payoff organizations receive after sub-
tracting the total search costs. Find that the addition of
move costs generates well-known dynamics that are also
intuitive. In results not reported here, we find that search
costs do not seem to impact the percentage of visits
to the higher peaks. However, given that our new per-
formance measure takes into account the efficiency of
search, we find that as costs increase, maximization out-
performs softmax both earlier and by a greater magni-
tude. This dynamic is well known and expected, because
organizations try to avoid higher search costs, and there-
fore become more “exploitative” in their behavior. Nev-
ertheless, the qualitative pattern holds.

One might imagine another sort of constraint on the
search process in the form of a budget constraint.7 As a
stylized representation of this, consider an organization
that engages in softmax search behavior, but is subject to
a budget. Once the budget is exhausted, the organization
is forced to switch to the mode of fully exploiting its cur-
rent beliefs or simply “gives up.” We explore this alter-
native search constraint by keeping track of the number

of zero-payoff locations (defined either as the absence of
external reward or as absence of positive Q(s� a) values)
the organization visits. Once a predetermined number
of such states are reached, the organization reverts to
fully exploitive behavior. A reasonable conjecture is that
such a search policy would yield results intermediately
between that of softmax and maximization and exploita-
tion. We find that this conjecture holds at moderate
to high levels of the search budget. At one extreme
(i.e., high levels of budget), as expected, performance
approaches that of softmax because the high budget
is unlikely to be constraining, and therefore behavior
would simply correspond to softmax. However, at very
low budget levels, such a policy, in fact, yields per-
formance results that are inferior to both policies. The
intuition behind this result is that an organization is
most likely to reach its budget constraint in the region
where it has the least informed beliefs, which will gen-
erally correspond to the area intermediate between the
two peaks and solutions. As a result, budget constrained
organizations are likely to switch to exploitation pre-
cisely in those states where exploratory nonmaximiza-
tion behavior would be most useful. Exploratory search
in the middle of the problem space can help push the
organization into the basins of attractions of the superior
solution. In contrast, to maximize in the region with the
least informed beliefs is problematic when the quality
of beliefs is poor. As a consequence, when budget is
very low, budget constrained organizations actually per-
form more poorly than the two pure forms of which this
search process is composed.

Finally, it is important to note that while we believe
that the Q-learning mechanism provides the appropriate
modeling of representation in a multistage setting, our
results are not contingent upon this specific mechanism.
We have used Q learning to generate sensible beliefs and
to vary their accuracy and completeness. Our analysis
then examines the efficacy of maximization with respect
to these beliefs. The qualitative pattern of our results are
not specific to Q learning, and in results not reported,
holds when we use other alternative mechanisms such
as an �-greedy strategy (Sutton and Barto 1998).

4. Discussion and Conclusion
Our results highlight an important facet of the famil-
iar classic trade-off between exploration and exploita-
tion (March 1991, Holland 1975). While there is a
clear understanding in the management literature that
exploitation of one’s current beliefs may lead to a focus
on near-term payoffs (Levinthal and March 1981) and
proven alternatives (Levitt and March 1988), we show
that, in a multistage problem, exploitation can lead to
an immediate decline in payoffs and not just a pos-
sible long-run penalty from insufficient learning about
latent alternatives. We show that a decision policy that



Fang and Levinthal: Near-Term Liability of Exploitation
Organization Science 20(3), pp. 538–551, © 2009 INFORMS 547

is mildly, but not strongly, exploitative is superior to an
explicit maximization of perceived payoffs even in the
near term. Less than full maximization leads to a robust
approach to problem solving in a multistage setting. Fur-
thermore, this robustness does not depend on the updat-
ing of beliefs; instead, it depends on the identification of
“clues” or signals of value associated with intermediate
steps in the multistage problem. Even in the absence of
any updating of beliefs, a more exploratory decision rule
can be advantageous.

However, it is important not to overinterpret these
results. The systematic performance enhancement as a
result of maximization is significant when representa-
tions are well aligned with reality, indicating possi-
ble dangers of excessive experimentation. We want to
emphasize here the possibility of problematic conse-
quence of maximization, not its inevitability. In partic-
ular, it is undoubtedly possible to rerun a simulation
model with different parameter settings and different
model formulations so as to produce a “better” picture
for maximization. Such demonstrations, however, would
not eliminate the possible dangers associated with max-
imization, which is central to our existence statement.

Our result that exploitation leads to immediate perfor-
mance decline fits well with several related findings in
the complementary disciplines of artificial intelligence
and cognitive psychology. First, it is well known in
the work on complex systems and the artificial intelli-
gence literature (Kauffman 1993, Selman et al. 1994)
that, on complex surfaces (e.g., rugged landscapes with
many hills and valleys), the presence of many local
optima make the application of local search methods
problematic. Because a local search algorithm starts
from a candidate solution and considers only alterna-
tives solutions in the neighborhood of the current one, it
often results in an adaptive system being trapped in the
wrong hill. As such, additional mechanisms are needed
to counterbalance this tendency. One such mechanism
is randomness, or noise. The reason is that, in a com-
plex landscape, there are multiple “attractors” (or hills)
to which the system migrates over time. These attrac-
tors each commands a basin of attraction, a region of
the problem space within which the system will settle
toward the associated attractor. Given multiple attrac-
tors and basins of attraction, an adaptive system often
exhibit sensitivity to initial conditions. In other words,
small differences in starting values could result in the
system settling into different basins of attractions, and
therefore, different attractors. Yet, the amount of sen-
sitivity to initial conditions is not uniform throughout
space. The sensitivity is less in the basin of the attractor
and more at the edge of the basin (Guastello 1995).

Noise, or randomness, capitalizes on this structural
property of a complex landscape and allows an attrac-
tor to expand to its fullest range (Breeden et al. 1990;
Jackson 1991a, b; Ohle et al. 1990). For a system that

is trapped on a local peak, noise introduces random
movements away from the existing attractors. Precisely
because the sensitivity to initial conditions is not uni-
form, the introduction of noise, on average, favors the
discovery of superior attractors whose bases of attrac-
tion are more extensive. Indeed, studies have shown that
the addition of randomized moves significantly improves
the performance of a variety of local search algorithms
(Selman and Kautz 1993, Selman et al. 1994, Fukunaga
et al. 2004).

Second, our result shares another interesting and useful
connection with studies of problem solving in cognitive
psychology. Newell and Simon (1972) first introduced
the concept of human problem solving as a search
through a problem space. Problem spaces can be rep-
resented by two different extremes (Perkins 2000). On
the one hand, simple problems have “homing” spaces,
in which all contours lines demarcate a region where
the solution can be found. On the other hand, complex
problems are characterized by problem spaces in which
the goal is buried in the midst of clues that are irrele-
vant, misleading, or without any clear direction. To suc-
cessfully navigate through this kind of landscape, one
needs a “precipitating event” that leads the search proc-
ess to escape from traps and irrelevant cues (Perkins
2000). Random search, in this context, makes it possible
to break through an existing boundary in the problem
space.

Furthermore, supporting evidence of the “bridging”
effect of exploration can be found in discussions of
incubation, which refers to taking a break while strug-
gling to solve a problem. Incubation may eventually
speed up the solution process (Wallas 1926) and its
benefits have been attributed to unconscious processing
(Poincare 1929, Campbell 1960, Simonton 1995) and
integration of external cues (Langley and Jones 1988,
Yaniv and Meyer 1987). Recent evidence, however, sug-
gests that no processing activity takes place during the
break. Rather, the break’s only function is to divert the
solver’s attention away from the problem, thus releasing
the mind from the grip of a false organizing assump-
tion (Kaplan and Simon 1990, Segal 2004, Seabrook and
Dienes 2003, Simon 1966). Even though no new infor-
mation is gathered and processed, the interruption allows
decision makers to see the problem with “fresh eyes,” a
mechanism similar to “bridging.”

Randomness in search produces performance bene-
fits by capitalizing on the structural properties of the
underlying representations. This echoes closely with our
analysis. Randomness does more than generate new
information about unsampled spaces. In a context in
which one has useful but fragmentary knowledge about
the world, exploration changes the starting point for the
subsequent search process. It serves as an important
robustness check and facilitates further examination of
the fragments of existing knowledge in complex problem
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spaces. While representations provide a powerful guide
to action, they should be best viewed as “general” guid-
ance rather than a specific sequence of behavior to be
rigidly followed.

This image of tempered use of one’s beliefs about
optimal action is central to the notion of robust action
(Leifer 1991, Padgett and Ansell 1993). Leifer (1991),
drawing from DeGroot’s (1965) classic studies of expert
chess players, finds some striking examples of the value
of not strictly adhering to a model of optimal behavior.
DeGroot (1965) asked players to articulate two consec-
utive moves in a balanced chess situation. After a player
selected her first move, the experimenter responded with
an opponent’s move that had been anticipated by the
players as expressed in their pregame analysis. If a
player were confident in her strategy choice, she should
move in an anticipated way by executing the previously
declared strategy. Indeed, it took less expert players,
on average, only a few seconds to execute their sec-
ond moves. The most expert players such as grandmas-
ters, however, took some 20 minutes to make the second
move, despite the fact that the opponent’s move cor-
responded exactly to what they had predicted. A pos-
itive relationship was found between the skill level
of the players and the amount of time they took to
respond in their second move. Leifer (1991) suggests
that expert players engage in local action that preserves
opportunities8 and continually reevaluated appropriate
strategies, despite a well-articulated attack plan. Only
when favorable opportunities became clear do skilled
players switched to an “intentional” mode and the pur-
suit of ex ante strategies (Leifer 1991, p. 66).

In a more natural setting, our analysis on the exploita-
tion discount may provide a useful conceptual backdrop
to the observation of the productivity paradox in the
literature on process management. Consistent with our
results, empirical evidence suggests that efforts at ration-
alizing an underlying business process, such as ISO 9000
certification, increasing yields, or reducing defects, are
often linked to an immediate decline in financial perfor-
mance (Sterman et al. 1997, Garvin 1991) and new prod-
uct innovations (Benner and Tushman 2002). In part,
such perverse relationships may emerge as a result of
a dysfunctional pursuit of subgoals that only imper-
fectly capture the path to the firm’s ultimate profitabil-
ity. Yield, or product defects, may be important quality
measures, but their link to firm performance need not
be straightforward. Consistent with our analysis, Benner
and Tushman (2003) find that it is important to sustain
some degree of variability in the firm’s processes to be
effective in new product developments.

Clearly, much work remains to flesh out the contin-
gencies regarding the relative superiority of alternative
choice mechanisms in different problem environments
and belief structures. For instance, in a one-shot deci-
sion context, such as modeled in two- and n-armed ban-
dit problems, maximization on the basis of an unbiased

set of beliefs will always provide the highest expected
payoff in the current period. However, in the problem
context modeled here, actions often take one to another
point in the problem space and not to some ultimate pay-
off generating state. The multistage nature of the prob-
lem context impacts directly how performance is defined
and how differential choice strategies are evaluated. In
addition, we have implicitly assumed that problems are
encountered with sufficient regularity, so that there is the
opportunity for learning to accumulate across episodes.
It would be interesting, in future work, to explore inter-
mediate cases between such idiosyncratic histories and
the fixed surface examined here. Intelligence in such set-
tings would require the ability to generalize across prior
distinct, but related, problem settings or domains. For
instance, analogical reasoning is a powerful form of gen-
eralizing across experiences (Gavetti et al. 2005).

To conclude, intentionally rational decision-making
hinges on both an organization’s model of their deci-
sion environment and the choice operator that is applied
to these beliefs. As a research community, we have
perhaps underattended to the interplay between these
two considerations. Unbiased, but incomplete, represen-
tations may result in settings in which choice mechan-
isms that deviate from maximization are superior. We
have shown in such settings where choice has an inher-
ent dynamic quality, robust action may be a superior
choice strategy to more fully exploitive behavior, even
when measured in terms of immediate performance out-
comes. More broadly, these results point to the limits
to the normative superiority of maximization approaches
in the face of incomplete representations of the problem
context.
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Endnotes
1Denrell et al. (2004) examine how credit assignment can
be approached when there is a single outcome using the
Q-learning method. The issue we examine here of the possible
inferiority of maximization as a decision strategy could not
occur in the context of the single-peak structure considered in
Denrell et al. (2004). Our work is concerned with how agents
can learn to differentiate among multiple alternative outcomes.
2Other possible alternative strategies exist. For instance, one
could use �-greedy strategy by selecting the action with the
maximum value most of the time, but to chose randomly
among the remaining options with a small probability (�).
Recent experimental evidence suggests that softmax accounts
for the pattern of subjects’ exploration behavior better than the
�-greedy strategy (Daw et al. 2006, Lee 2006). In results not



Fang and Levinthal: Near-Term Liability of Exploitation
Organization Science 20(3), pp. 538–551, © 2009 INFORMS 549

reported here, we implement the �-greedy strategy and results
are qualitatively the same.
3We use the terms maximize and exploit interchangeably here
as exploitation corresponds to taking actions, which maximize
payoffs according to the organization’s beliefs.
4This performance measure implicitly assumes that there is no
cost of moving in the problem space. In the robustness section,
we introduce moving costs, which reduce the payoffs agents
can attain. As we will discuss later, while this reduces the
magnitude of the effects, the qualitative properties remain.
5Some readers may argue that we are measuring performance
differently from how organizations themselves evaluate per-
formance. An organization stop search whenever either peak
is found and assign positive value to identifying the inferior
peak (in our baseline model, the value of the inferior peak is
set to 10 and that of the superior peak to 50), yet we measure
performance outcomes as favorable only when the organiza-
tion gets to the higher peak. We have analyzed a more general
stochastic setup in which the two peaks generated rewards with
different probabilities, but given the stochastic reward struc-
ture the agent cannot immediately infer whether the inferior or
superior peak was reached by observing a single reward. For
instance, suppose each peak yields a high or low payoff with
probability p1 and (1−p1), respectively, for the superior peak
and p2 and (1− p2) for the inferior peak. One peak is supe-
rior to the other to the extent that p1 exceeds p2. However,
experiencing a single outcome with either peak does not indi-
cate which peak is superior. While we have run this stochastic
version of the model and find similar results, we have chosen
to present, for simplicity, a deterministic version (essentially
with p1 = 1 and p2 = 0).
6More precisely, distance in a multidimensional space is
known as hamming distance. It is a simple count of the
number of different digits present in two strings to be com-
pared. In other words, it measures the number of substitutions
required to change one into the other. For instance, the ham-
ming distance between 00001 and 00000 is 1; while the ham-
ming distance between 11111 and 00000 is 5.
7The authors thank Associate Editor Henrich Greve for making
this suggestion.
8For this reason, Padgett and Ansell (1993) use the term robust
action.
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