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Abstract
Strategies often are stylized on the basis of particular prototypes (e.g. differentiate or
low cost) whose efficacy is uncertain often due to uncertainty of complex interactions
among its elements. Because of the difficulty in assigning causal credit to a given element
for an outcome, the adoption of better practices that constitute strategies is fre-
quently characterized as lacking in causal validity. We apply Ragin’s (2000) fuzzy logic
methodology to identify high performance configurations in the 1989 data set of MacDuffie
(1995). The results indicate that discrete prototypes of practices are associated with higher
performance, but that the variety of outcomes points to experimentation and search.
These results reflect the fundamental challenge of complex causality when there is limited
diversity in observed experiments given the large number of choice variables. Fuzzy set
methodology provides an approach to reduce this complexity by logical rules that permit
an exploration of the simplifying assumptions. It is this interaction between prototypical
understandings of strategy and exploration in the absence of data that is the most
important contribution of this methodology.
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Introduction

L
ong-term strategy is the choice of capabilities that
result in a bundle of attributes embodied in a product
or service that allows a firm to position itself via other

firms favorably in a market. This characterization suggests
then two stages, the first involving the development of
capabilities, and the second the exploitation of these
capabilities to achieve a particular positioning in the
market. The dynamic problem is then the development of
capabilities that permits the firm to position competitively
in markets for its products and services (Kogut and
Kulatilaka, 2001).

The complicating feature of this choice is that these
capabilities are embedded in human–machine relationships
that are not additive in their effects. In the parlance of
recent body of economics, these interactions define
complementary practices whose efficacy depends upon
the presence of the joint composition (Milgrom and
Roberts, 1990). A classic example is the achievement of
high-performance work systems (MacDuffie, 1995). Such a
work system consists of a bundle of practices that improves
the productivity and quality of production. Candidate
practices are work systems that use human resource

policies that dictate incentives and training levels. Since
the effective use of one practice is contingent upon the
adoption of another practice, there are inherent interac-
tions among these elements.

However, the lists of factors that can compose these
systems are many, and the number of experiments is
limited. Hence, the task of sorting out these interactions
into configurations, or complements, of practices poses a
problem of complex dimensionality. If we think of practices
as taking on high or low values (e.g. present or absent),
then the analysis of two practices suggests looking at a 2k

combinatorial problem. As dimensionality enters as the
exponent, the combinatorial space rapidly expands with the
increase in practices. The inter-disciplinary interest in this
problem is an indication, in fact, that dimensions are likely
to be many. The choice of bundles is influenced by the
economics of production, by the internal policies of a firm,
and by institutional factors (e.g. unions or regulation). As a
consequence, the statistical analysis to identify bundles and
measure their effects is itself quite complex.

Recent attempts to sort out this problem have relied
upon case descriptions and upon simulations. A case
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description cannot sort out complex causality and is
incapable to determining bundles unless considerable
controlled experimentation is permitted. We refer below
to the problem of complexity as ‘assigning causal credit’.
Simulations can be useful. However, they often avoid the
principal points of interest by stipulating a fixed techno-
logical landscape and dimensionality, assuming all combi-
nations are visited, and being unable to confront empirical
data.1 In a more philosophical perspective, complexity
poses not only the intriguing problem of the contingency of
what is knowable, but also the human construction of what
is believed to be contingent. Hence, we would like a method
that searches for causality but in recognition of its
contingent knowability and its human construction. The
method we propose to identify ‘bundles’ under these
conditions is fuzzy set methodology.

It is often missed in the literature on the transfer of best
practices that there must first be agreement on what are the
best practices. Owing to the complexity of this assignment
of causality, it is not surprising that we deal linguistically
with such complexity by the use of fuzzy prototype
categories that reduces multiple dimensions to discrete
categories. For example, the strategy of divisionalization
was often defined in reference to General Motors. The
literature on high-performance work practices in the auto
industry has stressed the importance of the Toyota model
of production as a point of emulation. The terms
‘Toyotaism’ or ‘Ohnoism’ (after an influential production
engineer at Toyota) populate the academic discussion
(Coriat, 1991), while the popular discussion has centered on
‘lean production’ as the generic characterization of the
Toyota model (Womack et al., 1990). The Toyota Produc-
tion System serves, in effect, as a prototype in the sense of
Rosch (1978). Few firms, or plants, conform precisely to the
typified Toyota operation, but approximate this idealized
type through some degree of possession of the attributes
that constitute membership in this category.

Evolving strategies often reflect this competition to
migrate toward prototypical configurations that act as
poles of attraction guiding the search for better practices.
Behind this search is a set of recurring questions: Do these
prototypic configurations lead to better outcomes? Did a
firm that claims to have adopted ‘lean production’ actually
do it and if so, to what extent and to what effect? Is a firm
that adopts only new work teams a better example of high-
performance work systems than a firm that adopts
performance-based pay and extensive training? Or are they
both examples of transitional systems, or variations of
traditional work practice configurations? How do patterns
of work practices interact with changes in production
practices, such as the implementation of lean inventory
buffers, and how much are the combined socio-technical
innovations required to affect performance? In short, the
inferential problem of assigning causal credit is easily
overwhelmed by the limited diversity that the world offers
as experiments, as well as the fundamental difficulty of
categorizing these data into primary units of analysis.

Earlier work has sort to identify bundles by statistical
analysis of data, often collected at the plant level.2 For
example, MacDuffie (1995) collected questionnaire obser-
vations from auto plants – the data used in this article – and
developed constructs based on bundles of practices to test

their interactive effects on performance, that is, to identify
configurations. Similar efforts have been made by Ich-
niowski et al. (1997) in their analysis of steel plants. These
efforts persistently face the difficulty of omitted influences
and the risk of misspecification of the functional form.
Comparative work, for example, has found that the
adoption of work practices (e.g. mass production, or
quality circles) is strongly contingent upon the institutional
context of a country (Piore and Sabel, 1984; Cole, 1985).
The interaction of contextual factors with work practices
creates a high-level problem of dimensionality. As a result,
it is very hard to sort out the influence of unobserved
contextual factors from the proper specification and
identification of the relationship among work practices.
Owing to the high order of dimensionality in the problem,
research into complementarities among elements is often
forced to apply simplifying assumptions about the interac-
tions that are guided by these prototype understandings.

We seek to provide a grounded method for discovering
configurations by applying an inductive fuzzy logic
methodology.3 Fuzzy logic is a classifier methodology that
‘assigns credit’ to specific combinations of traits for
achieving an outcome. The problem of credit assignment,
to use Holland’s (1992) phrasing, arises in the context of
genetic algorithms that search for the string of genes
responsible for particular phenotypic outcomes. Managerial
practices are usually many elements strung together, with
opaque clarity as to their causal implications. Unlike
biological genes, practices are rarely crisply manifested,
but rather are characterized by a fuzzy membership in
prototype categories that are cognitively understood. Fuzzy
logic, as developed in Ragin (2000), begins with the
recognition that categorization is not unique and crisp
and that diversity is limited. Based on a fuzzy categoriza-
tion of membership, it identifies sufficient and necessary
configurations, or complements, that explain a given
outcome but in reference to simplifying assumptions. In
this way, it assigns credit to the combination of elements
that are causally responsible for the observed outcomes,
with the caveat that this credit is assigned in the context of
limited diversity – the world cannot generate all experi-
ments – and of explicit logical assumptions made by the
analyst.

After explaining the methodology, we analyze MacDuf-
fie’s (1995) data on high-performance systems in the world
auto industry. MacDuffie collected data on 70 auto
assembly plants throughout the world. He formed three
constructs from multiple questionnaire items to measure
lean buffers, new work systems, and human resource
practices. While controlling for other factors, he found that
each of these constructs positively influenced productivity
and quality in separate regressions. He also tested for their
two-way and three-way interactions, using both multi-
plicative and log-additive specifications. The results showed
that the interactions also were correlated with better
performance, suggesting that there were complementarities
in their joint interaction. Not all the interactions were
positive, and there was modest indication of a lack of
robustness in the analysis of quality.4

Strategies consist, of course, of more than just the choice
of production elements and include such positioning
factors as pricing or market choice. In Figure 1, we depict
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the formulation of strategy as consisting of the state
variables that describe a firm’s resources and hence its
capabilities (one the left hand side) and the choice of
markets, prices, and other positioning choice variables (on
the right hand side). In our analysis, we hold positioning
variables constant by focusing on auto plants that are
producing cars for a similar mass market with considerable
cross-country shipment of product. By this choice, we
analyze for a cross-section in time a sample of plants to
determine the configuration of practices and technologies –
what can be called production strategies – that are
complements for achieving high performance. We define
high performance as the joint achievement of high
productivity and quality. Through iteration between the
fuzzy configurations and the qualitative data (see also
MacDuffie, 1996, 1997), we seek to provide a rich analysis of
high-performance cases that lends itself to generalization.

Motivation
The vast debate over the definition of Japanese production
methods reveals a history of a discursive search for better
practices amid a time of heightened competition and yet
create uncertainty over the complex causality in regard to
performance. Many academics played important roles in
defining and diffusing understandings regarding Japanese
practices. For example, Ouchi’s (1981) Theory Z analysis
pointed to the importance of managerial techniques as the
source of competitive gain for Japanese enterprises. In a
strikingly precocious study, Schonberger (1982) discussed
the combination of practices required to achieve Japanese
high quality and high performance in manufacturing
plants. Studies were made that rebutted the claim that the
source of cost advantage is lower capital costs (see, for
example, Flaherty, 1984). By 1985, a major study on the
world automobile industry concluded that the Japanese
approach to production organization established a new
standard of best practices (Altschuler et al., 1984: 161). At
the same time, some union studies took a skeptical attitude

towards such initiatives as quality circles (Parker, 1985). In
addition, there was considerable skepticism over lean
production techniques that unions saw as methods to
‘speed up’ the line.5

In the studies focused on a single sector, such as
automobiles, the growing body of field observations and
data suggested a number of practices that might explain a
perceived Japanese cost advantage. Yet, there was disagree-
ment over how to categorize these practices and over the
variation in Japan that posed the question of what
exemplified ‘Japanese’ manufacturing. This debate con-
tinues in more recent studies, such as the overview offered
by Liker et al. (1999) that concludes that the Japanese
Management System, in their terminology, cannot be
reduced to a prototypical configuration exemplified by
Toyota.

This debate around best examples, or the ideal type,
suggests that the discourse at this time was around category
formation (what constitutes new practices) and around
prototypes by which to anchor these understandings. (See,
for example, Rosch (1978) and the early statement by
Lakoff (1973).) In Lakoff’s (1987) analysis of prototype
categorization, people hold category concepts that are
characterized by central members, or objects. Members
more distant from these central prototypes are peripheral;
hence categories are radial, with central and peripheral
membership. A classic example of a prototype illustration is
the category of birds (Lakoff, 1987: 44–45). Although most
people would agree that a robin is an excellent member of
the category of birds, an ostrich or penguin are more
distant members. Scientifically, their membership may be
satisfied by a definition of the required genetic makeup of a
bird. However, cognitively, people hold a prototypical
image of a bird, and membership to this class is
characterized by a radial property in which some members
are attributed a higher degree of membership than others.
In fact, members to the same category may hold no
feature in common, and yet the implicit categorization may
link them through a ‘category chaining.’ For example, a

Resource, Capability, and Markets

Resources:
People
Technology
Machines

Capabilities
Speed
Flexibility
Cost

Markets
Existing or Related
Price

Advertising

Organizing resources into
capabilities

Positioning resources for
specific markets

Long term Short term

Figure 1 Strategic choice in the long- and short-run: resource, capability, and markets.
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penguin and ostrich may have no common defining
characteristic of ‘birdness’, and yet belong to the same
category due to their sharing different traits in common
with the central trait.

Fuzzy sets are, as discussed below, exactly these
polythetic categories that classify membership by a type
of chaining rule. The methodology classifies cases by
membership, treating them as characterized by configura-
tions of attributes. It infers causality by testing all
combinations against their membership value in the set of
outcomes (e.g. productivity) and, thereby, assigns credit to
the individual factors that are logically identified as
explanatory, either separately or as discrete combinations.
It then returns to the field observations by analyzing
the prototypical cases. It is this iteration between
formal classification and qualitative assessment that
distinguishes fuzzy set methodology from more statistical
approaches.

Yet all of these studies collect data on somewhat different
variables, propose different bundles or clusters of practices,
and suffer from the problems of unobserved effects and the
difficulty of estimating the full set of interactions among
practices, as noted above. In the language of an inductive
analysis, these results diverge because of a disagreement
about the size of the dimensional space, the variables that
define this space, and the specification of the complexity of
these variables. Logical analysis resolves these issues by
conceding them. The determination of a configuration of
variables that are causally related to a given outcome (e.g.
high performance) is sensitive to dimensionality and
limited diversity. This problem is not eliminated by
complex distributional assumptions regarding unobserved
effects. To the contrary, the problem (which manifests itself
in the Boolean logic as contradictions, or as unexplored
diversity) is an invitation to return to the cases, informed
by an inductive empiricism combined with explicit
theoretical suppositions.

In the academic discussion, the eventual evidence
pointed to the claim that best practices could be
represented by a prototype drawn from the Japanese
examples that consisted of advanced automation and three
sets of practices: work, inventory management, and human
resources. Ichinowski et al. (1997) determined that these
factors were the complements that were suitable for steel
plants producing for an environment marked by an
increasing combination of cost and quality considerations.
Similarly, MacDuffie (1995) argued that these three
practices, while controlling for technology and scale,
produced jointly high performance, as measured by quality
and productivity. In the work below, we propose this
prototype as the working theory: plants that are character-
ized by all three of these practices dominate those that
characterized by two or, even more so, by one or none. It is
possible, in fact, that in the absence of one or two of these
practices, the best choice would be not to choose the third
practice. Thus, we would like to have a method that relates
polythetic categories to performance outcomes. We pro-
pose a fuzzy set methodology for this purpose.

Ideal type profile analysis, as proposed by a reviewer of
this paper, assumes that all elements of the ideal type be
considering when examining the fit of each case to this
type. In the fuzzy set analysis, the goal is to examine the

different configurations of features derived from a proto-
type (or ideal type if preferred) that are linked to specific
outcomes. In effect, fuzzy set analysis disassembles the
ideal type and then reassembles them systematically
through testing their causal relation to an outcome. This
method is not atheoretical; it starts with a prototype and
then provides a more exhaustive inferential engine to
identify multiple conjunctural causation. If, by ideal type
analysis, it should be meant the testing all possible
configurations for their causal claims, it then indeed
converges to the Boolean (or fuzzy set) methodology.
However, ideal type or contingency theory has not
produced any adequate alternative methodology, because
of a failure to understand the conceptual challenges, and
opportunities, to exploring causal complexity.

Boolean crisp sets
Given this complexity, a natural approach is to turn to
non-parametric methodologies that rely upon rankings
and that engage the researcher in trying to identify the
causality. One approach is to identify logically the possible
interactions as bundles of complements that define a
configuration. The analysis of configurations confronts
the difficulty of trying to understand ‘configurations’ whose
elements share an unspecified and unknown relationship
among themselves in reference to an observed outcome. In
crisp Boolean logic, these elements are coded 0 or 1, and
their observed effect is also coded as 0 or 1. Each
configuration indicates, consequently, a truth statement
that pairs a particular configuration of elements to a binary
outcome.

Qualitative comparative analysis uses Boolean logic to
identify the minimal list of configurations that determine
the truth condition of the observed cases (Ragin, 1987). It
proceeds by inductively coding the configuration and truth
condition of each case, and then applying a ‘logic’
algorithm developed for electronic circuit design to find
robust causal (or functional) relationships that reduce the
observed truth table to a minimal number of logical
statements.

To return to the example of the auto industry, it is often
posited that new work practices (e.g. work teams plus job
rotation plus off-line problem-solving groups) and certain
human resource practices (e.g. extensive training, perfor-
mance-based pay) are required to achieve a high-perfor-
mance system. We would code the two causal factors as 0 if
absent in a given factory, and as 1 if present; similarly, we
code high performance as absent, 0, or present, 1. Since any
causal element can take 2 values, there are then 2k, or 4,
possible configurations: {0,0}, {0,1}, {1,0}, {1,1}. Let us make
the critical assumption – to which we will return later – that
we empirically observe each of these configurations, and
each configuration has a corresponding truth value of low
performance (0) or high performance (1).

We want to pose the question what is the minimal
‘covering’ logic to which we can reduce the 4 possible
configurations. This reduction is both an empirical and
logical question, that is, we need to know the empirical
truth values in order to make the logical reduction.
Consider, for example, two configurations where the first
two columns refer to work teams and training, respectively,
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and the third column gives the truth value for high
performance.

Case 1 : 1 0 : 1
Case 2 : 1 1 : 1

In this case, the second factor is clearly redundant and
the presence of work teams is sufficient to cause high
performance. Our two-dimensional box collapses to a line
whose end points [0,1] sufficiently determine the truth
condition. By sufficiency, we mean the logical inference that
an effect is present whenever a given cause is also present.
We can also say that a configuration is sufficient if,
whenever the member factors are jointly present, they
always generate a given effect.

To illustrate necessity, consider an effect that has three
potential causes. To continue our example, we can add, to
work teams and training, the third causal condition
(column 3 below) of whether a factory is lean (1 for low
inventory buffers) or not lean (0 for high buffers). Three
factories have the following configuration and associated
truth values:

Case 1 1 0 1 : 1
Case 2 1 1 1 : 1
Case 3 1 0 0 : 0

For these configurations, we no longer can claim that
work teams (column 1 entries) are sufficient, for they are
present in case 3 and yet the effect of high performance was
not observed. A comparison of Cases 1 and 2 eliminates
training as a causal factor and implies that high perfor-
mance is caused by the joint presence of work teams and
low buffers. Case 3 indicates, though, that work teams are
not sufficient to cause high performance in the absence of
low buffers; such practices are necessary but not sufficient.
Work teams were present in every configuration associated
with high performance. Thus we can infer that they are a
necessary condition; if they are not present, high perfor-
mance is not observed.

The logic of necessary and sufficiency conditions is
essentially, then, a statement about the set-theoretic
relationships between cause (X) and effect (Y). A necessary
condition always subsumes the set of outcomes. There are
cases in which a necessary cause is present but there is no
effect, but there is never a case in which the effect is present
but the necessary cause is not. In other words, there is no
case in which Y but not X. (We relax this statement below to
hold true statistically, but not absolutely.) Sufficiency
implies that the outcome also includes the set of sufficient
causes. There may be cases where high performance exists
but a sufficient cause is missing, but a sufficient cause
cannot be present without the presence of high performance.
In other words, there is no case in which X but not Y.

Thus, a cause (X) that is sufficient or necessary for a
given effect (Y) implies the following relationships:

X is a necessary condition : Y � X if Y ) X
X is a sufficient condition : Y � X if Y ( X

In the case that Y and X are subsets of each other, then
we can infer that X is a necessary and sufficient cause of Y.

Of course, causes need not be individually sufficient or
necessary and the logical reduction of cases may result in a
complex array of causal configurations. Boolean compara-
tive analysis essentially is an inductive logic to find the
minimal set of configurations that explains the truth
condition. A configuration is itself the intersection of
factors whose conjunction causes an outcome. To say that
the combination of lean buffers and new work practices
cause high performance through their joint presence is
logically equivalent to stating that their intersection is
causally associated with a particular truth condition. By
intersection, we mean that lean buffers ‘AND’ new work
practices causes high performance.

These simple definitions formalize some of the discus-
sion on universality, contingency, and configuration. A
sufficient condition is universal; a necessary condition –
when not also sufficient – is contingent, or perhaps better
said, all causal combinations are contingent on its presence
(see Delery and Doty, 1996). For social science, it is
common to find that a given effect is associated with
multiple configurations. Multiple conjunctural causation is
characterized by the condition of an effect being produced
by different combinations of factors. A listing of these
causal combinations is expressed logically as the union of
the configurations. Union means, for example, that lean
buffers ‘OR’ new work practices causes high performance.
(In this example, we would conclude that either condition is
sufficient.)

Boolean minimization relies upon two principal opera-
tions:

Absorption: AþAB¼A
Reduction: ABþAb¼A(Bþ b)¼A(1)¼A
The second operation is derived directly from the

distributive and complement laws of Boolean algebra.6

The first operation derives from the laws of subset. If AB is
the intersection of the sets A and B, then this intersection
must be equal to, or be a subset of, A.

How many possible logical configurations are there? In
the degenerate case of no variance in the truth condition,
each configuration is causally associated with the outcome
and, consequently, there is no possible reduction in the
configurations. With variance in truth conditions, the
application of Boolean logic reduces configurations to
simpler causal statements.

In the earlier example, we skipped by an important point
that a factor might be causal in its presence or absence, or
be redundant. The 2k calculation, illustrated above, assumes
that each factor is causal. As we saw, the application of
Boolean logic seeks to reduce these configurations to more
robust and general relationships, and some factors might
drop out as redundant. Lean buffers, for example, might
cause high performance; not lean buffers might also cause
high performance (perhaps in conjunction with high
volume); lean or not lean buffers may have no effect at
all. Let us demarcate the presence of ‘lean buffers’ by a big
B, ‘not lean buffers’ by lower case b, and its absence of any
effect by eliminating it from the causal configuration,
denoted by ‘—’. We have then three possible states that lean
buffers might take – present (B), absent (b), no causal effect
(—). Similarly, we use ‘T ’, ‘t’, and ‘—’ to denote teams, not
teams, and no causal effect of teams. Consequently, if n
(the number of possible causal factors) is 2, we have 3n�1,
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or 8, possible causal combinations: {b,t}, {B,t}, {b,T}, {B,T},
{B,—}, {b,—}, {—,T}, {—,t}.

If the number of cases is large, the probabilistic
significance of each observed configuration can be tested
against a benchmark proportion, called p*, that represents
an analogue to the researcher’s prior of the mean success of
a ‘very good’ theoretical prediction. The realized success of
a configuration in correctly predicting a truth value can be
compared against this benchmark, and this deviation –
along with the sample size and estimate of the sample
variance – can be used to calculate a Z-score as a measure
of probabilistic significance:7

ðP � P	Þ � 1=2N
ffiffiffiffiffiffiffiffiffiffiffi
pq=N

p � z

Obviously, if the number of cases is small, it will be
difficult to reach significance.

This latter observation raises the important issue that
some configurations will not be observed. This problem of
limited diversity is distinct from the issue of specification
error through omitted variables. Of the possible interpreta-
tions, two are particularly important. The first is that
limited diversity reflects a weakness in the research design
to sample cases for all experimental combinations. An
analogue would be a study of the effects of smoking on
mortality of men and women that failed to include any
observations on smoking women. But another possibility is
that nature does not run all experiments. This possibility
raises the question of what should be the inference from
missing configurations. The Boolean approach forces the
researcher to analyze the implications of unobserved logical
combinations. This contrasts sharply with conventional
statistical analysis, where regions of the vector space that
lack cases are included in the results by implication, with
no thoughtful consideration of these regions. Through an
examination of limited diversity directly, the researcher is
invited to explore existing and possible worlds.

Fuzziness
It is an obvious objection that the world rarely conforms to
a binary, or crisp, characterization. A rich person is
different from very rich. Sexual membership as male or
female is, biologically, relatively crisp in some respects, but
less so in others. It is clearly not crisp if the question is
sexual preference or sexual identification. It is common in
social science research to rely on categories to offer discrete
approximations of a continuum. For example, rich
countries have per capita income in excess of $15,000,
middle income is less than $15,000 but more than $5000,
and the income of poor countries is less than $5000. It is
possible to code each of these discrete categories as three
binary variables. The logical complexity increases drama-
tically through this method, since the number of config-
urations increases exponentially by 2n.

However, there is a more fundamental issue than logical
complexity concerning the way people categorize and
describe phenomena. It was noted early that individual
often classify on the basis of prototypes. Prototypes are best
examples of members belonging to the same category. The
usage of prototypes implies, therefore, that the degree of

membership is a gradient, with more distant members
holding lower degrees of membership.8 Using this concept,
we define membership in a fuzzy set of a given member x in
the fuzzy set of A as

mAðxÞ ¼ Degreeðx 2 AÞ

Degree of membership can be geometrically portrayed by
a hypercube in which a set is no longer constrained to be
located at one of the ‘crisp’ vertices. The simple case is a
straight line:

0 0.5 1

The two end points are the crisp values of 1 or 0, in or
out of the set. Values in between identify fuzzy member-
ship, for example, fairly rich countries or not very rich
countries (Klir and Yuan, 1995). The mid-point, 0.5, is of
interest, for it defines maximal fuzziness (or what Kosko
(1993) refers to maximal entropy) and it represents a
natural cognitive anchor.

A prevailing practice in statistical work is to combine
like-items into a scale by imposing a functional transfor-
mation. For example, the data can be factor analyzed, or
transformed into z-scores while testing for their inter-item
discrimination. Membership values in a fuzzy set can also
be subjected to scaling. The caveat to scaling is that since
the causal analysis (as described below) relies upon greater
than, or less than, relations (rather than correlations), the
results are very sensitive to the data values.

Partially as a consequence of this sensitivity, the assign-
ment of membership can be strongly influenced by
linguistic hedges (Klir and Yuan, 1995: 230–231). Zadeh
(1972) proposed that such a hedge as ‘very’ signifies that
membership values should be squared (what he called
concentration). The hedge ‘fairly’ is naturally captured by
taking the square root of membership (or what he referred
to as ‘dilation’). These transformations have a common-
sense property. Clearly, an apple that has a membership
value of 0.5 in the set of red apples should have a lower
membership value in the set of very red apples.

The above example relies intuitively upon a notion of
subsets. An important property upon which we rely heavily
in the analysis below is that membership of x in a subset of
A is less than or equal to membership in the set of A:

mBAðxÞ  mAðxÞ

Figure 2 provides a graphical illustration that member-
ship of X in the subset of A, defined by a two-dimensional
space, lies in the domain of the set of A.

Fuzzy set logic
The categorization of entities by their degree of member-
ship means that categories are not exclusive. This property
has the attractive feature of conforming to commonsense
notions of categories: people can be somewhat religious or
somewhat moral. Manufacturing plants similarly have high
membership in new work practices, but low membership in
team organization. This property of membership, however,
poses the question of how should we define the intersection
and union of fuzzy sets. What is the membership value of a
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plant in the intersection of new work practices and work
organization?

Since membership values are binary, logical operations
on fuzzy sets are more complicated than crisp operations,
though fairly simple. The key difference is that membership
values in a fuzzy set lies in the interval of [0,1]. As a result,
the operations of negation, union, and intersection must
heed the membership values.

Negation: In crisp logic, the set of A has the complement
of the set of not-A (See Klir and Yuan, 1995: 50). This
operation applies also to fuzzy sets. Consider the set A
whose element X has a fuzzy membership denoted by a
point along the unit interval. Then, negation is simply

m�AAðxÞ ¼ 1 � mAðxÞ

This definition is technically intuitive, and yet deserves a
note of caution. For while the complement of rich is not
rich, we would not want to say that the complement of rich
is poor. We may view Portugal as holding a membership
value of 0.4 in the set of rich countries, and hence the value
of 0.6 in the set of not rich countries. Yet, we may assess its
membership in the set of poor countries as considerably
less than 0.6. Language matters in understanding fuzzy sets,
and the use of a predicate logic does not eradicate the
ambiguity in linguistic terms and quantifiers.

Union: The union of two sets is logically denoted as an ‘or’
operation. The union of A and B implies that x belongs to A
or B. However, this denotation is complicated in the context
of fuzzy logic, because the membership of x in A or B can
take on any value between, and including, 0 and 1. Fuzzy
logic applies the union operator by taking the maximum of
the membership value of X in each of the two sets:

mA[BðxÞ ¼ maxðmAðxÞ;mBðxÞÞ

If X is short and smart with membership values of 0.5
and 0.8 respectively, in these two sets, X has then a

membership value of 0.8 in the set of people who are short
or smart . This definition corresponds intuitively with the
implication of an ‘or’ operation. That is, x is a member of
set A or set B with degree of membership equal to its
maximum membership in each set.

Intersection: Fuzzy logic defines the intersection operator
as the minimum of the membership degree of X in each of
the two sets:

mA\BðxÞ ¼ minðmAðxÞ;mBðxÞÞ

The intersection of two sets is logically denoted as an
‘and’ operation. To belong to two sets means that X is
member of both set A and set B. If X is not jointly a
member, then it does not belong to the intersection. Again,
we see a complication that X is likely to have different
membership degrees in the two sets. It is unappealing that
X’s membership in the intersection should be greater than
its membership in either of the individual sets.

The application of the minimum operator makes
intuitive sense and is consistent with a prototype theory
of membership. Consider the adjectives of big and furry to
describe dogs. A given dog can be furry and very small, and
it has membership values of 0.9 and 0.10 in the respective
sets of furry and big. To average these membership values
would give the misleading impression that furry can
linearly compensate for being small. It might be surprising,
having purchased a dog by the internet without a photo and
who bore only the characterization as ‘a more or less’
member in the set of big and furry dogs, to open a big box
containing a Pekinese. To most, a Pekinese has a low degree
membership in the club of dogs who are both furry and
big.9 The minimum operator also makes formal sense.
Recall the earlier definition of complementarities as super-
modular. Since the value of doing two things together is
higher than when they are apart, it makes sense to
guarantee that the arguments to the function are all
increasing. Taking the maximum would neglect the inferior
argument. The minimum indexes increases in the joint
presence of two variables by the least value. This permits a
direct test of whether the minimum of doing two (or three
or more) is associated with increases in performance.

Fuzzy causal inference
Assigning membership values to all possible combinations
constitutes the first step in the analysis. The second step is
to derive those combinations, or complements, that explain
the causality of observed outcomes. Causality in fuzzy logic
shares some of the intuitive properties commonly con-
fronted in statistical work. In linear specifications, we ask
how does y vary with more of x. Fuzzy causal inference
relies upon the set-theoretic definitions of necessity and
sufficiency to identify factors that satisfy the sub-set axioms
(Ragin, 2000). For necessity, the outcome is a subset of the
causal factor. Necessity implies, then, that the membership
degree of a case in a causal factor should be associated with
a smaller membership value in an outcome. For sufficiency,
the causal factor is a subset of the outcome. Sufficiency
implies, then, that the membership degree of a case in the
causal factor should be associated with a larger member-
ship value in an outcome.

(0.1,0.6)
subset   (0.9,0.6)

not a subset

Set 
(0.2,0.7)

0.1 1.1

0.0 1.0

Figure 2 Subsets.
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A graphical illustration of determining necessary and
sufficient conditions can be given by graphing the degree of
membership in a hypercube in which a set is no longer
constrained to be located at one of the ‘crisp’ vertices.
Figure 3 shows a hypothetical relationship between lean
buffers and the causal outcome of high performance. Lean
buffers satisfies the axiomatic definition of a necessary
condition, because all cases have larger membership
degrees in it than in the causal outcome.

Figure 4a portrays the analysis of sufficiency. Since the
membership value in work teams uniformly is less than the
membership degree in the causal outcome for all cases, we
conclude that lean buffers is sufficient. Figure 4b illustrates
the same analysis for a configuration of two factors (lean
buffers and work teams). Since we are looking at their joint
effect (or intersection), we take the minimum of each case’s
membership value in these two factors. The minimum
effectively moves the distribution of dots to the left, except
for the unlikely case that the membership values in the two
causal factors are the same.

It is obvious that a given factor cannot be both sufficient
and necessary, except for the cases when the causal factor
and causal outcome share the same membership values.
Empirically, we expect that a causal factor or configuration
will not be found only above or below the diagonal. The
statistical formula to calculate the z-score, as given above,
permits an assessment of the statistical significance of
necessity and sufficiency. Moreover, since, for fuzzy set
logic, every case has a membership value in a configuration,
the problems of small sample size are much less severe than
for crisp logic.

The calculation of the z-score requires the researcher to
state a benchmark. Here the linguistic hedge suggests the
choice of the benchmark proportionality. To ask, for
example, if the observed proportion is significantly greater
than ‘usually necessary’ indicates a benchmark of 0.65. A
benchmark of ‘very necessary’ implies a value slightly
greater than 0.7 benchmark. (The linguistic hedge of ‘very’
is mathematically equivalent to squaring the membership
value, as discussed earlier; the square of 0.71 is approxi-
mately 0.5, the cognitive anchor where a member is
maximally more or less a member of the set of ‘very
necessary’ causes. We use the value of 0.65 in the following

analysis.) Whereas these benchmarks may seem arbitrary
(but no more arbitrary than the conventions governing
questionnaire scaling such as a Cronbach alpha or
significance tests), sensitivity analysis around the bench-
mark easily provides a way to assess robustness. In
addition, sensitivity of measurement error can be examined
by adjusting the diagonal to accept errors that differ by a
stated percentage off the diagonal.

The determination of fuzzy sets proceeds, then, by
statistically identifying necessary causes. Cases that reveal
zero membership in the necessary causes are eliminated
(by definition, they cannot satisfy the logical condition of
necessity). Sufficient causes are then found by identifying
causal configurations that statistically satisfy the
requirement that their membership values are less than
the causal outcome.10 This analysis generates then a listing,
or union, of sufficient configurations, conditioned on the
initial identification of necessary causes. To achieve a
global assessment of the statistical strength of the analysis,
a membership score in the sufficient configurations for
each case can be calculated. The comparison of this
membership degree against the observed membership in
the causal outcome serves to generate a test statistic to
determine the significance of the classification success of
the method.

Any cause that is individually sufficient is also sufficient
jointly. (Proof is available on request.) Necessity of one
cause does not mean, however, that two necessary causes
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Figure 4 Plot of fuzzy relationship of sufficient condition and casual effect:
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are jointly necessary. However, any jointly necessary
conditions are also individually necessary. (A proof is
available on request.) It is thus justified to apply rules of
Boolean absorption to fuzzy sets. Since the configuration
Ab is a subset of the configuration of A (i.e. Ab is an
intersection and hence a subset of A), the union of two
configurations Ab and A logically implies that x will have a
membership value equal to its membership value in A.
Thus, AbþA logically reduces to A.

For example, the statement that tall men must shave can
be absorbed into the statement men must shave. To a great
extent, this rule captures the meaning of a radial category.
Peripheral members are absorbed into more basic repre-
sentations of the category.

However, the rule of Boolean reduction does not apply.
Since (Bþ b) equals max(B,b) and not 1 – as in crisp logic,
the crisp law of complements does not hold and AbþAB
does not reduce further. Fuzzy set analysis consequently
loses some of the logical sharpness of the crisp method,
since configurations do not easily reduce to more general
and simpler causal factors.

This loss of sharpness is compensated partly by the
statistical analysis that tests each configuration for
significance. Since all cases (e.g. auto plants) are members
to some degree in each configuration, each configuration
has a sample size equal to the number of all plants in
the sample.11 This property greatly facilitates the applica-
tion of statistical methods, as described above. The
configurations that pass significance can then be minimized
by the absorption rule that applies to both crisp and fuzzy
sets.

The final step of the analysis then assigns cases to
configurations by choosing the maximum membership
value of that case in the minimized configurations.
For example, an analysis of auto plant productivity
might find that technology and human resource manage-
ment constitute one configuration and technology and
high-scale form another. A given plant has a membership
score of 0.4 in the first and 0.7 in the second (each score is
derived by taking the intersection, or minimum, of the two
practices constituting that configuration). The assignment
rule would then assign this plant to the second configura-
tion.

This reduction can obviously assign plants that are bad
examples of a particular configuration. It makes little sense,
for example, to claim that a given plant is characterized by
high-performance work practices when it belongs weakly to
every attribute set that defines this configuration. This
possibility conforms with a prototype theory of classifica-
tions whereby an ostrich is bad example of a bird. It also
reflects a methodological weakness in fuzzy sets insofar that
operations of intersections can assign members to classes
that are not commonsensical. Lazarfeld (1937) offers, as
noted before, a proposed solution to this type of problem
by ruling out implausible combinations. (This intervention
is broadly standard in statistical methodologies, such as in
confirmatory factor analysis or model specification.) In a
similar fashion, we propose to allow for the use of
commonsense and theoretical intervention in two forms.
First, in the interpretation of the configurations, we look at
the ‘better’ prototypical examples, that is, those cases that
score 0.5 or more in a configuration.

Secondly, to reduce the overall solution space, we check
the simplifying assumptions that eliminate configura-
tions that grossly violate theoretical and commonsensical
relationships. As in the case of Boolean comparative
analysis, the fuzzy set methodology faces the problem of
limited diversity. Consider Figure 2 that provides a two-
dimensional representation of operations on fuzzy sets.
Imagine that the graph is divided into four quadrants from
each of the midpoints at 0.5. The corners represent the
crisp sets, and in this way, each quadrant is associated with
a given crisp configuration. Limited diversity arises
when there is no case in a quadrant. For Boolean analysis,
limited diversity is obvious, as no case will show the
configuration.

For fuzzy sets, since all cases have membership in all
configurations, it is necessary to be especially careful to
check that a causal configuration is not derived from an
assumption that is not strongly justified by the empirical
data. This verification is conducted by enumerating all the
crisp sets and identifying those that have no cases with
membership values greater than 0.5. This list can be used to
isolate the combinations of factors for which there is little
empirical evidence. This then poses the question if these
combinations, that Ragin (2000) labels simplifying assump-
tions, are justified to play a role in deriving the minimized
configurations. To check robustness, the researcher can
check if these assumptions have been incorporated into the
results of the sufficiency analysis. If this is the case, the
researcher can either eliminate the simplifying assumption,
which may change the results, or decide for theoretical
reasons that the assumption should be retained. Both of
these strategies have analogues in other methods. Econo-
metrics often infers from the absence of a condition that
decision makers did not choose this configuration because
it was not profit maximizing. This provides information
and can be used in the estimations (see Athey and Stern,
1998, for an example). The second strategy is more
common and arises in multiple variable regressions when
one factor is not significant, but contributes to the overall
estimation. An advantage with the Boolean and fuzzy set
methodologies is that the researcher can explicitly identify
the simplifying assumptions used in the minimization and
decide, based on theory or field knowledge, if they should
be eliminated or retained.

Sample and variables
We apply the technique of fuzzy sets to identify bundles, or
complementary practices, among technical and organiza-
tional factors affecting manufacturing performance in the
world auto industry. The International Assembly Plant
Study was sponsored by the International Motor Vehicle
Program (IMVP) at M.I.T. Totally, 90 assembly plants were
contacted, representing 24 producers in 16 countries, and
approximately 60% of total assembly plant capacity world-
wide. Survey responses were received from 70 plants during
1989 and early 1990. These plants were divided into
‘volume’ and ‘luxury’ categories (the latter defined as
plants producing automobiles with a 1989 U.S. base price of
over $23,000), on the assumption that the production
systems for these product types might differ substantially.
This paper includes data from the 62 volume plants, whose
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surveys were more complete; because of missing data, only
57 plants are used for productivity and 45 for quality. The
actual samples used in the logical analysis are 56 and 44,
respectively, as the analysis assigns one plant in each
sample a zero membership in the outcome and conse-
quently eliminates it from the analysis.

Table 1 lists the distribution of the 62 volume plants by
regional category. The proportion of plants in different
regions corresponds closely to the proportion of worldwide
production volume associated with those regions, with a
slight underrepresentation of Japanese plants in Japan and
overrepresentation of New Entrant and Australian plants,
whose volume is low. Plants were chosen to achieve a
balanced distribution across regions and companies, and to
reflect a range of performance within each participating
company, minimizing the potential for selectivity bias.

Questionnaire administration and data collection
Questionnaires were sent to a contact person, often the
plant manager, who distributed different sections to the
appropriate departmental manager or staff group. Plants
and companies were guaranteed complete confidentiality
and, in return for their participation, received a feedback
report comparing their responses with mean scores for
different regions. All 90 plants that were contacted were
visited by one of the researchers between 1987 and 1990.
Early visits provided the field observations that became the
foundation of the assembly plant questionnaire. Some of
these plants were used to pilot the questionnaire as well.
For the 70 plants that returned a questionnaire, the visit
often followed receipt of the questionnaire, providing an
opportunity to fill in missing data, clarify responses that
were unclear or not internally consistent, and carry out
interviews to aid the later interpretation of data analyses.
When the visit preceded receipt of a questionnaire, this
same follow-up process to improve data accuracy was
carried out via phone and fax. We calculate membership
degrees for both productivity and quality measures from
the sample of plants for which there are usable outcome
data. Some cases eliminated later due to missing data for
the independent variables anchored the performance
scaling at these extreme values; thus the ultimate member-
ship scores for performance do not necessarily vary from
0 to 1.

As the measures are described in detailed in MacDuffie
(1995), we supply only brief descriptions here.

Measures – dependent variables

Productivity
Productivity is defined as the hours of actual working effort
required to build a vehicle at a given assembly plant,
adjusted for comparability across plants by a methodology
developed by Krafcik (1988). The productivity methodology
focuses on a set of standard activities that are common
across all plants in the survey, to control for differences in
vertical integration. Since a large vehicle requires more
effort to assemble than a small vehicle, adjustments are
made to standardize for vehicle size. Adjustments are also
made to standardize for the number of welds, which differs
across designs and therefore affects headcount in the body
shop.

This scale was fit to a [0,1] interval. Then, because high
labor hours per vehicle indicates low productivity, we took
the complement (i.e. subtracted the membership degree
from 1) to create a reverse scale that indicates monotonic
increases in productivity.

Quality
The quality measure is derived from the 1989 survey of new
car buyers in the US, carried out by JD Power. The variable
measures the number of defects per 100 vehicles. It is
adjusted to reflect only those defects that an assembly plant
can affect, that is, omitting defects related to the engine or
transmission, while emphasizing defects related to the fit
and finish of body panels, paint quality, and the integrity of
electrical connections (Krafcik, 1988). As with productivity,
by taking the complement, we reverse scaled this measure.

Measures – independent variables12

Production organization measures
To measure the organizational logic of lean vs mass
production systems, three component indices were con-
structed – use of buffers, work systems, and HRM policies.
The variables included in these indices reflect choices,
based on fieldwork, about what items to include in the
assembly plant questionnaire as well as statistical tests
aimed at boosting the internal reliability of each index.
Reliability tests are reported in MacDuffie (1995).

Each of the three component indices is composed of
multiple variables, described below. All variables are
standardized by conversion to z-scores before being
additively combined to form indices. Each variable in an
index receives equal weight, because there was no clear
conceptual basis for assigning differential weights. For ease
of interpretation, a linear transformation is applied to the
summed z-scores for each component index, such that 0 is
the plant with the lowest score in the sample and 100 is the
plant with the highest score. The validation of these indices
is described in the next section.

(i) Use of buffers: This index measures a set of production
practices that are indicative of overall production philoso-
phy with respect to buffers (e.g. incoming and work-in-
process inventory). A high score on this index signifies a
minimal buffer ‘lean production’ approach, and a low score,

Table 1 Composition of volume assembly plant sample

Regional category n

Japan (J/J) 8
Japanese-parent plants in North America (J/NA) 4
US-parent plants in North America (US/NA) 14
Europe (All/E) 19
New Entrants, including East Asia, Mexico Brazil
(All/NE) 11

11

Australia (All/Aus) 6

Total 62
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a large buffer ‘mass production’ approach. It consists of
three items:

(ii) Work systems: This index captures how work is
organized, in terms of both formal work structures and the
allocation of work responsibilities, and the participation of
employees in production-related problem-solving activity.
A low score for this variable indicates a work system with a
narrow division of labor that is ‘specializing’ in orientation,
and a high score indicates a ‘multiskilling’ orientation.

(iii) HRM policies: This index measures a set of policies
that affects the ‘psychological contract’ between the
employee and the organization, and hence employee
motivation and commitment. A low score for this variable
indicates a ‘low commitment’ set of HRM policies and a
high score indicates ‘high commitment’ policies.

Control variables
The idea of control variables is standard in regression
analysis to eliminate potential influences in non-experi-
mental settings. For Boolean or fuzzy set analysis, they pose
added dimensionality that can quickly complicate the
logical inferences, especially for small data sets. We chose,
therefore, to work with three control variables to capture
technology, scale, and model age; to explore robustness, we
also added part complexity.

Technology (automation). The main technology variable,
the automated percentage of direct production steps,
captures the level of both flexible and fixed automation.
For each functional area, a proxy measure for direct
production activities was developed; see MacDuffie (1995)
for details. Then a weighted average level of automation for
the plant was calculated, based on the amount of direct
labor each functional area requires in an average unauto-
mated plant.

Scale. This is defined as the average number of vehicles
built during a standard, non-overtime day, adjusted for
capacity utilization. Overtime is not included in either
production levels or hours worked, which adjusts for
overcapacity situations.

Model design age. This is defined as the weighted
average number of years since a major model change
introduction for each of the products currently being built
at each plant. This measure is a partial proxy for
manufacturability in the assembly area, under the assump-
tion that products designed more recently are more likely
than older products to have been conceived with ease of
assembly in mind. While older designs, by moving down
the learning curve, could be associated with fewer hours per
car, most evidence suggests that the benefits of more
manufacturable designs outweigh learning curve gains
(Womack et al., 1990).

Parts complexity. This measure is compiled from two
subgroups of variables: parts or component variation and
factors influencing the logistics of material and parts flow
and the administrative/coordination requirements for deal-
ing with suppliers. All these variables are scored on a 1–6
scale, where 1 is the lowest and 6 the highest complexity
level. They are additively combined and the resulting index
is rescaled from 0 to 100, as above.

Table 2 contains descriptive statistics for the variables
used here. Means are based on the rescaling of each variable
from 0 to 1, as required by fuzzy set analysis. The mean for
productivity as transformed is roughly centered in the
middle of this distribution. The control variable means
reflect the fact that the predominance of plants have
relatively high levels of automation and relatively young
product designs. The mean for scale is relatively low
because the largest plant, scored as 1, is an extreme outlier
in terms of size; we discuss the effects of this outlier on the
analysis below. Finally, means for the indices linked to lean
production reveal that the use of lean buffers is most
common in this sample, with a mean near 0.5, while the
means for both the HRM and work systems indices are
considerably lower.

As Table 2 also shows, both the variables capturing lean
production (WORK, BUFF, HRM) and the control variables
(SCALE, AGE, TECH) are significantly correlated with
productivity. Indeed, the weakest correlation is with scale,
suggesting that economies of scale are not such a dominant
influence on labor productivity in this setting as it
commonly supposed. Correlations among the three indices

Table 2 Descriptive statisticsa

Pearson’s correlation

Variable Mean Standard deviation PROD SCALE WORK BUFF HRM AGE TECH

PROD 0.5512 0.2208 1 0.306* 0.587** 0.502** 0.529** 0.558** 0.685**

SCALE 0.2289 0.1841 0.306* 1 0.222 0.238 0.188 0.137 0.514**

WORK 0.2202 0.2712 0.587** 0.222 1 0.651** 0.652** 0.304* 0.292*

BUFF 0.4698 0.2655 0.502** 0.238 0.651** 1 0.586** 0.542** 0.382**

HRM 0.3388 0.3192 0.529** 0.188 0.652** 0.586** 1 0.350** 0.461**

AGE 0.7293 0.2108 0.558** 0.137 0.304* 0.542** 0.350** 1 0.525**

TECH 0.6626 0.2008 0.685** 0.514** 0.292* 0.382** 0.461** 0.525** 1

aAs quality reduces the size of the data set, we do not include the descriptive statistics for it here. They are available on request from the
authors.
*Correlation is significant at the 0.05 level (Po0.05).
**Correlation is significant at the 0.01 level (Po0.01).
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of lean production are also quite high, as the conceptua-
lization of this overall production system would suggest.
While plants with high scores for lean practices also tend to
be highly automated and have younger products, they are
not necessarily large; the correlations between the three
production organization indices and scale are not sig-
nificant. Scale and technology are strongly correlated,
however, as both capture different aspects of capital
investment at a given plant.

Analysis of cases
Fuzzy set methodology is a classifier technique that
combines logic with the researchers’ knowledge of the
terrain. The search for the fuzzy sets of complementary
activities involves first an analysis of necessity, then of
sufficiency. If the analysis reveals any necessary conditions,
this condition then appears in all configurations that pass
the sufficiency test. We first calculate all 3n�1 combina-
tions for the variables. These variables include the controls
(i.e. scale, technology, model age) and the organizational
factors (i.e. new work practices, advanced human resource
management practices, and lean buffers.) There are
consequently 728 causal combinations to test. The test
statistic for sufficiency compares the proportion of the
times that the minimal value of a configuration (defined by
the intersection operator) is less the value of the outcome
(productivity or quality) against some benchmark. We use
0.65 as the threshold for sufficiency, as this hurdle resulted
in the most parsimonious results. The causal combinations
that pass this test are then submitted to an ‘absorption’
algorithm to derive the minimal configuration.

We made two decisions to arrive at robust solutions.
First, we squared the measures for productivity and quality.
Squaring serves to accentuate the hedge ‘very’, as noted
earlier, and served to dissipate the bunching of outcome
variables. A plant with a high productivity score is ‘very’
productive. Second, we were sensitive to the potential that
the inferential engine by which all permutations are taken
and then tested for necessity and sufficiency might lead to
outcomes that have low empirical and theoretical support.
Thus, for a configuration evaluated as sufficient, we would
like to verify that the conclusion was not reached by an
inference from assuming a configuration to be empirically
valid when the actual support is low. This error arises from
the problem of limited diversity discussed earlier. We made
then the following decision rule: for all simplifying
assumptions (configurations for which the empirical
support is weak), if two out of three production organiza-
tion indices (WORK, HRM, BUFFERS) were in a not-
condition, we rejected this simplifying assumption and did
not allow it to contribute to logical absorption. This
decision rule resulted in a more parsimonious and robust
set of solutions. We discuss the applications of this rule
below.

Productivity analysis
Table 3 provides the baseline test for productivity-squared
that includes the indices of buffers, work practices, and
HRM practices as well as controls for scale of production,
level of automation, and average age of the models
being assembled. Recall that intersection is represented

by multiplication (AB), whereas union is represented by
(AþB). The necessary cause analysis indicates three neces-
sary conditions (Po0.01): not-scale, a low young) product
age, and a high level of automation. (The statistical test is
one-tail, as we do not care about cases that fall below
the benchmark.) While this result was as expected for
product age and automation, it seemed unusual to find
not-scale, that is, a relatively low level of daily production,
to be associated with higher labor productivity, that is,
fewer hours per vehicle. After all, the auto industry is
generally regarded as the prototypical example of econo-
mies of scale.

Upon investigation, we found that the division of the
sample into scale and not-scale categories was heavily
influenced by the presence of a single outlier case. This
plant, the largest in the world at that point in time, had a
daily level of production more than four times the sample
mean and 30% more than the second highest volume plant.
This plant was also relatively inefficient, particularly in
relation to its supposed scale advantage; it can in many
ways be viewed as a prime example of the diseconomies of
scale. Because of this outlier, the classification procedure is
assigning membership in the set of ‘extremely large’ and
‘not extremely large’ plants. ‘Not-scale’ as a necessary
condition contains nearly 90% of the sample, all plants with
scores above 0.5 in this set of ‘not extremely large’ plants.
Besides the outlier plant, five other plants have scores of
above 0.5 in the ‘extremely large plant’ category and hence
do not meet the necessary condition of ‘not scale’. It is
worth noting that many plants in the ‘not-scale’ subset are

Table 3 Fuzzy-set analysis of complements: results for productivity (number of
cases: 56)

A. Necessary cause analysis
Variable No. of cause

outcome
Observed

proportion
Z P

scale 48 0.86 3.11 0.001a

SCALE 6 0.11
work 43 0.77 1.71 0.004
WORK 7 0.13
buffers 31 0.55
BUFFERS 31 0.55
hrm 40 0.71 0.87 0.193
HRM 18 0.32
age 12 0.021
AGE 50 0.89 3.67 0.000*
technology 20 0.36
TECHNOLOGY 49 0.88 3.39 0.000*

B. Sufficient cause analysisa

Scale HRM AGE TECHNOLOGY+
Scale WORK BUFFERS AGE TECHNOLOGY+
Scale BUFFERS AGE TECHNOLOGY

Test proportion: 0.65.
Significance level: o0.01.
Fuzzy adjustment: 0.05.

aExclusion of simplifying assumptions: scale WORK buffers hrm
AGE TECH.

Prototypes and strategy Bruce Kogut et al

125



well above any threshold of minimum efficient scale, and
operate with a production volume well above the world
average; these are not low-volume plants, they are simply
not ‘extremely large’.

Exploring complexity
We have emphasized that a primary advantage of Boolean
or fuzzy analysis is the exploration of the effects of missing
combinations, or combinations of low probability. We
examined the simplifying assumptions involved in the
sufficiency analysis. One such assumption included ‘not’
conditions for two of the three indices of production
organization, specifically not-buffers and not-HRM. Ac-
cording to this assumption, highly productive plants were
associated neither with low levels of buffers (or inventory,
repair space, utility workers) nor with high levels of
commitment-inducing human resource management prac-
tices. Based on prior analyses of this data set and extensive
fieldwork at these plants, we concluded that this particular
assumption (and following our decision rule, any assump-
tion that negated two or more of the production organiza-
tion indices) was implausible, and we excluded it. After this
exclusion, the sufficiency analysis for productivity gene-
rates three causal combinations.

The second configuration (not-scale, WORK, BUFF,
AGE, TECHNOLOGY) contains six plants, five of which
surpass the threshold value of 0.5. These plants are all
located in Japan and most closely resemble the lean
production ideal type. While their highest sufficiency score
is in this configuration, four of the five plants also have a
sufficiency score greater than 0.5 in the previous config-
uration. This suggests that all three of the production
indices (HRM, WORK, and BUFF) are identified as
sufficiency conditions for being a high productive plant
in this grouping, beyond the necessary conditions of high
automation levels and low product age. These results are
very supportive of the consensual understanding of
Japanese high performance work systems.

The third configuration (not-scale, BUFF, hrm, AGE,
TECHNOLOGY) contains 33 plants and is the most
geographically diverse group, ranging from the US and
Europe to Australia to Brazil, Taiwan, and Korea; it
includes no Japanese plants or transplants. Only six of
these plants surpass the 0.5 threshold. What characterizes
these six plants is that they have pursued productivity
through a different adaptation of the lean production
model, namely a heavy emphasis on the reduction of
buffers and a minimal emphasis on ‘high commitment’
HRM practices or new work practices. The other plants in
this category have low scores on various of these variables.
Some have very low levels of automation, others build very
old product designs, and many have very large buffers of
inventory (which generates a low score on BUFF). Any of
these could be the primary reason that these 27 cases are
not identified in the set of ‘very productive’ plants. These
non-productive characteristics also frequently overlap;
many of the plants in New Entrant countries have low
automation, old product designs, and a production system
reliant on large buffers.

The national diversity of these grouping also suggests
two interpretations. The first is that the historical point in

time when these surveys were collected reflected an
incomplete diffusion. This interpretation is in line with
the finding of the predominance of Japanese plants in the
first and second configurations that satisfy the 0.5 hurdle.
The second, and related interpretation, is that plants in
other countries were still experimenting in the context of
different national environments. Practices such as those
related to teams were anathema to nations, as they
challenged both union and firm control over the workplace.
It is not surprising in this light that the third group shows a
groping for new combinations that did not lead, however,
to high productivity.

We undertook one sensitivity analysis to test the effect of
choosing a 0.5 threshold for membership in a causal
configuration. Changing the threshold to 0.4 adds two
plants to the first configuration, no plants to the second
configuration, and nine plants to the third configuration.
These plants did not alter the substantive interpretation of
the categories. The difference between applying a member-
ship threshold of 0.4 vs 0.5 appears to be a matter of degree
and not of kind. Plants with sufficiency scores above 0.5 are
simply stronger members of the set of very productive
plants. Therefore, we continue, in subsequent analyses, to
apply 0.5 as the threshold for membership in a configura-
tion.

Quality analysis
In order to identify high-performance plants (defined as
plants that are highly productive and have high quality), we
turn next to the analysis of quality. Because we have only
data on quality for 43 plants, we report in Table 4 the
productivity analysis for this smaller subset to test for
robustness. The necessary and sufficient conditions are
unchanged; indeed, the fit measure is identical. This smaller
sample is used for the remaining analyses.

The results for the necessary conditions – which do not
report here – are the same as for productivity, although
the significance level for the technology variable is some-
what weaker (Po0.05 rather than Po0.01). This is
consistent with earlier analyses (MacDuffie, 1995)
which found automation level was not strongly correlated
with quality – even though most high-quality plants
were highly automated, many high-automation plants had
quite poor quality. We thus treat scale as a necessary
condition, and let technology be determined by the
sufficiency tests.

Table 4 Robustness test for productivity by varying N (number of cases: 43)

Sufficient cause analysis shown onlya

Scale HRM AGE TECHNOLOGY+
Scale WORK BUFFERS AGE TECHNOLOGY+
Scale BUFFERS hrm AGE TECHNOLOGY

Test proportion: 0.65.
Significance level: o0.01.
Fuzzy adjustment: 0.05.

aExclusion of simplifying assumptions: scale WORK buffers hrm
AGE TECHNOLOGY.
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Exploring complexity
For the sufficiency analysis given in Table 5, we excluded
three simplifying assumptions, following our decision rule
regarding the infeasibility of any such assumption in which
two out of three production organization indices (WORK,
HRM, BUFFERS) were in a not-condition. Five causal
configurations result from this analysis. The first config-
uration consists of a combination of lean buffers and work-
related practices, such as problem solving. The next two
configurations each contain two organization indices
combined in different ways (WORK BUFFERS; WORK
HRM; and BUFFERS HRM) along with the necessary
conditions. The final two configurations both contain
HRM; ‘not-work’ is also included in the fourth configura-
tion and ‘not buffers’ in the fifth configuration. As with
productivity, this analysis reveals differences in the extent
to which plants with strong membership in the category of
high-performing plants have implemented certain of the
production organization policies of lean production.
Whereas for productivity, plants with minimal buffers but
more traditional HRM policies achieved respectable per-
formance, the pattern for quality differs. Here, it is high-
commitment HRM policies that are most consistently
associated with high level of quality performance; HRM
appears in four of the five configurations. It is not a
necessary condition because one configuration exists for
plants for which WORK and BUFFERS are sufficient to
predict quality without HRM being causally relevant.

High-Performance analysis
We defined earlier high-performance plants as those
producing quality autos at high levels of efficiency. We
took therefore the intersection (i.e. the minimum) of
productivity and quality to form a single outcome called
high performance. In Table 6, we examine plants that
achieve high performance in both productivity and quality,
that is, the ‘high-performance system’ plants. The same
three necessary conditions hold, with a significance level of
Po0.01 for TECHNOLOGY once again. We exclude only
one simplifying assumption here, the same assumption
identified in the productivity analysis.

This analysis identifies four causal configurations in the
sample of 43 plants for which we have both productivity
and quality data. Using the threshold of 0.5, we find only
12 plants are strong members of this category of high-
performance plants. There are two plants in the first
configuration, six plants in the second configuration, four
plants in the third configuration, and none in the fourth
configuration. This reduction in the number of plants is not
surprising. Many plants are able to maximize either
productivity or quality by trading off against the other
outcome, but only the highest-performing plants are able to
achieve both productivity and quality simultaneously.

There is not a high level of differentiation in performance
among the configurations in this analysis. Some plants have
identical membership scores in two of the three configura-
tions; we treat these plants are members of both config-
urations in the performance analyses below. Still other
plants have their highest membership score in one
configuration, but have a membership score above the 0.5
threshold in another configuration, indicating a strong
overlap in the influence of the sufficient conditions across
these configurations.

The first configuration (not-scale WORK BUFFERS AGE
TECHNOLOGY) contains six plants located in Japan. Four
of these plants have identical scores for the third
configuration (not-scale WORK HRM AGE TECHNO-
LOGY), and the other two also have strong membership
(score40.5) in the third configuration. The first four plants
confirm quite closely to the lean production ideal type.
Their identical scores across these configurations reinforces
the conceptual argument about mutual interdependence
across the three aspects of production organization
measured here, and the positive consequences of this
interdependence for simultaneous achievement of high
productivity and high quality. In contrast, the latter two
plants are distinguished by a somewhat lower adherence to
commitment-inducing HRM policies in relation to plants in
the other two configurations.

The second configuration (not-scale work HRM AGE
TECHNOLOGY) contains six plants that were all included
in the first configuration of the productivity analysis (see
Table 3). Four of these plants are Japanese transplants
located in North America, and the other two are located in
Mexico and Korea; the latter two also manufacture autos of
Japanese design. In relation to the other two configurations,

Table 5 Results for high-performance systems: fuzzy-set analysis of quality and
performance (number of cases: 43)

Sufficient cause analysis shown onlya

Scale WORK BUFFERS AGE+
Scale WORK HRM AGE+
Scale BUFFERS HRM AGE+
Scale work HRM AGE TECHNOLOGY+
Scale buffers HRM AGE TECHNOLOGY

Scale WORK buffers hrm AGE TECHNOLOGY, scale work
buffers HRM AGE TECHNOLOGY, scale WORK buffers
hrm AGE TECHNOLOGY.

Test proportion: 0.65.
Significance level: o0.01.
Fuzzy adjustment: 0.05.

aExclusion of simplifying assumptions.

Table 6 Robustness results for high-performance systems by varying excluding
assumptions (number of cases: 43)

Sufficient cause analysis shown only:a

Scale WORK BUFFERS AGE TECHNOLOGY+
Scale work HRM AGE TECHNOLOGY+
Scale WORK HRM AGE TECHNOLOGY+
Scale buffers HRM AGE TECHNOLOGY

Test proportion: 0.65.
Significance level: o0.01.
Fuzzy adjustment: 0.05.

aExclusion of simplifying assumptions: scale WORK buffers hrm
AGE TECHNOLOGY.
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these plants have very high scores on HRM but lower scores
on WORK and BUFFERS because they had only partially
implemented on-line/off-line work team activities and Just-
in-Time inventory policies at this point in time. For the
Japanese transplants, these scores reflect not only the
relatively young age of these plants but also the decision to
make small group activities more voluntary than in Japan,
and the necessity of stocking higher levels of inventory
given the much greater geographical dispersion of the
supply chain in the US.

The presence of plants in Mexico and Korea in this
category of ‘high performance’ plants suggests that product
design may play some role in a plant’s performance level,
since superior design-for-manufacturability can make
assembly both more efficient and less vulnerable to defects.
But it also suggests that many of the production organiza-
tion policies can be transferred successfully to settings in
emerging economies, where automation levels are typically
quite low. In such plants, high levels of worker training and
high levels of selectivity for jobs viewed as quite desirable,
in terms of pay, benefits, and job security, helps
compensate for the generally lower level of education
among the workforce.

The third configuration (not-scale WORK HRM AGE
TECHNOLOGY), as mentioned above, contains four
Japanese plants that are also members (with identical
scores) of the first configuration. In contrast, the fourth
configuration (not-scale not-buffers HRM AGE TECHNO-
LOGY) contains no plants with scores above 0.5, suggesting
that plants with relatively large buffer stocks and only
modest adoption of flexible work practices are not capable
of achieving membership in the category of ‘high-perfor-
mance system’ plants, even if their use of commitment-
inducing HRM policies is extremely high.

In Figure 5, we graph the relationship between the
observed (actual) high performance of a plant and the
maximum value the plant takes in any of the four
configurations. Given the classification system that seeks
to align configurations and performance, it is not surpris-
ing the scores lie along the diagonal. The interesting aspect
of the figure is the identification of how few plants and their
associated best configuration are prototypes of high
performance.

Tables 7 and 8 examine the performance means for the
causal configurations identified in the productivity (Table 3)
and ‘high-performance system’ (Table 6) analyses. For
productivity, the second configuration (not-scale WORK
BUFFERS AGE TECHNOLOGY) has the best average labor
hours per vehicle (17.5); plants in the other configurations
require 51 and 80% more hours per vehicle, on average. The
combined analysis of ‘high-performance systems’ given in
Table 8 (which corresponds to Table 6 and to Figure 5),
there is much less difference across the configurations. The
four Japanese plants that possess membership in config-
urations one and three have the best combined perfor-
mance, at an average of 19.1 hours per vehicle and 44
defects per 100 vehicles; by virtue of this combined
membership, we know that they have high scores on
WORK HRM and BUFFERS. Consistent with the earlier
analyses, the configuration with the best-quality perfor-
mance (#2, at 43.2 defects per 100 vehicles) features high
scores on HRM, while the configuration with the best-

productivity performance (#1, at 18.9 h per vehicle) features
high scores on WORK and BUFFERS.

Thus, while there is no one single configuration of
production characteristics associated with ‘high-perfor-
mance systems’, lean production achieves performance
advantages through the complementary interactions across
two of three key areas of production organization: the
management of buffers, the organization of work, and the
human resource. These policies yield high levels of skill and
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Figure 5 Plot of actual and predicted maximum membership value for high
performance.

Table 7 Performance means for productivity configurations

Configuration Productivity
(hours per

vehicle)

Group 1 (scale HRM AGE TECH)
threshold¼ 0.5

26.5

Group 2 (scale WORK BUFF AGE
TECH) threshold¼ 0.5

17.5

Group 3 (scale BUFF hrm AGE TECH)
threshold¼ 0.5

31.4

Table 8 Performance means for ‘high performance’ (productivity and quality)
configurations

Configuration Productivity
(hours per

vehicle)

Quality
(defects per

100 vehicles)

Group 1 (scale WORK BUFF
AGE TECH) threshold¼ 0.5

18.9 53.5

Group 2 (scale work HRM
AGE TECH) threshold¼ 0.5

24.4 43.2

Group 3 (scale WORK HRM
AGE TECH) threshold¼ 0.5

19.1 44.1
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flexibility in the workforce and induce high levels of
performance. However, these results do not confirm the
three-way interaction associated with the prototype of
complementarities among all three dimensions of a
production organization.

Discussion
The above results present a cross-section in the diffusion of
practices that began in Japan.13 High-performance systems
are generally associated with Japanese plants located in
Japan or outside. We did not find that all three work
practices were complements associated with high perfor-
mance, but we did find that two configurations of two of
these three practices were complementary. The diffusion
interpretation is further suggested by the plants outside of
Japan that evidenced a greater variability in the degree to
which they implemented these practices. Generally, higher
performance plants were those that more successfully
emulated ‘Toyotaism’, that is the complementary imple-
mentation of these practices.

Comparing these results to MacDuffie (1995), we can
identify a few important differences in methodological
treatments and conclusions. Like the MacDuffie analysis,
the fuzzy set methodology rejects a three-way interaction
(though the latter approach induces this result simulta-
neously for productivity and quality). The set theoretic
treatment of the cases allows configurations to be identified
rather than a sub-set tested for the statistical significant of
multiplicative interactions; see Ichinowski et al. (1997).
Thus, we can see more clearly why, for example, that
MacDuffie’s tests of complementarities to achieve high
quality were more problematic; clearly the interactions
among practices are highly complex. We are also easily able
to define high performance as the intersection of high
productivity and high quality, and avoid separate tests for
each. Finally, the analysis allows for an exploration of
assumptions and the exploration of combinations (even if
membership may be weak).

That a few combinations of practices can be assigned
causality for the achievement of high performance systems
across many countries suggests a transition period of
experimentation, whereby diversity in configurations –
whether planned or not – permitted an exploration of
practices, to decouple old practices and recouple new ones.
It is an important question, which these single cross-section
data cannot answer, whether this transition lead to a
convergence in a single set of best practice or in competing
prototypes. We did identify one ‘universalistic’ element of
small scale as a necessary condition (see earlier discussion
regarding the topology of Delery and Doty, 1996); it is
possible that in times of transition, smaller factories
provide better experimental conditions. For this cross-
section, we did not, however, find a single configuration,
but several associated with high performance. In large
part, these findings of multiple paths to a similar outcome
restate the idea of ‘equifinality’ proposed by Miles
and Snow (1978). It will take a time series to sort out
whether this multiple conjunctural causation is the product
of multiple equilibria, multiple environments, or a snap-
shot in a historical process yet to converge to a best
configuration.

Conclusion
The methodological treatment of complexity by fuzzy
inference permits a cautious assignment of causal credit.
In our application, we analyze an example where perfor-
mance itself is two-dimensional (productivity and quality).
We provide a method – the intersection of the two solutions
– to show how causal assignment to configurations is still
possible. This analysis is directly primarily at the under-
standing of the choice of capabilities, as we held the
product market constant across the plants. Obviously, the
full combination of capabilities and product market
positioning requires a fuller treatment of a firm’s strategic
decisions.

The world does not generate enough experimentation to
sort through all causal claims; the attribution of strategies
or any entity to particular categories can only be made with
fuzzy membership claims. Fuzzy set logic expresses this
fundamental limitation on possible inferences. For even if
we had full substantive understandings of the correct choice
of strategy in particular environments, the complex
interactions observed in practice poses two related
problems of assigning membership and causality. The
membership problem is, as we have seen, how to identify
correctly the match between strategy and noisy environ-
ments. The causal credit problem is how do we know
causality when observed or unobserved factors outside the
model influence the strategy choice.

Our proposal is to recognize the inherent complexity
facing researchers and decision makers and to develop
inferential methods of exploration that render explicit the
challenge of assigning membership and assigning causal
credit. Rather than control for unobserved sources of
variation, or lack of variation itself, we propose a systematic
treatment of, one, how people (researchers and managers)
think about the world through prototypes and, two, how
causal relationships can be inferred through reduction and
exploration of assumptions. The conclusions to this
exercise reflect informed thought-experiments about pos-
sible worlds through exploratory data analysis. It is this
avenue of analyzing worlds that may exist that is the most
intriguing aspect of the application of logic to empirical
cases. This perspective broadens the analysis from induc-
tion for the purpose of asserting general claims towards the
disciplined examination of worlds logically possible but
empirically and historically unobserved.
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Notes

1 Activity analysis in operations research had long noted the
problem of complements and the problem posed to optimiza-
tion. A literature that addressed this type of questioning is
‘contingency theory’; see Miller (1996), and Ferguson and
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Ketchen (1999), for recent statements. (We thank a referee
for these suggestions.) Recent articles using case or simula-
tions are Levinthal (1997), Rivkin (2000) and Siggelkow
(2001).

2 An excellent review is given in Pfeffer (1998) and Ichniowski
and Shaw (2003).

3 This analysis was reported in the working paper (Kogut et al.,
1999).

4 Hunter and Lafkas (1998) also show a link to wages from the
adoption of high performance systems. See Pil and MacDuffie
(1996) for a more recent discussion of bundles and diffusion in
the auto industry.

5 Adler (1993) provides an incisive examination of this debate by
looking at the General Motors–Toyota joint venture; Sengen-
berger (1992) reviews some of the reactions of unions in
several countries.

6 In Boolean (and fuzzy) algebra, union (logical OR) is indicated
with a plus sign (e.g. AþB), while intersection (logical AND)
is inducated through multiplication (e.g. AB).

7 For no30, a binomial probability test can be used.
8 We flag that there is a debate regarding prototype theory and

fuzzy logic. For example, Lakoff (1973) sees fuzzy logic as
insufficient for fully accounting for observed categorization
heuristics.

9 Hampton (1997) summarizes some of the objections from
cognitive psychology to fuzzy set definitions of prototypes.
Part of these objections consist of problems of taking
intersections among nested sets, a classic paradox in set
theory. We empirically avoid these operations below.

10 Theoretically, if enough cases lie exactly on the diagonal, a
cause can be found to be both sufficient and necessary.

11 For the analysis of necessity, we lose cases whose outcome
values are 0.

12 We choose to work with scaled measures rather than each
item; obviously, dimensionality would explode otherwise. It is
possible to work out fuzzy ways to reduce these items; we
relied upon our case knowledge to evaluate the scales.

13 One of the referees asked for the use of firm dummy variables.
Treating firm membership would, obviously, explode the
dimensionality that we treat. More importantly, as all our data
are the plant level and we are holding constant the product
market, we prefer to look at firm effects by looking at the
membership of the plants in each configuration and then
identifying firm, or nationality, effects.
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