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We formalize the idea that when managers require external investment to expand, higher skilled firms 
will be more likely to diversify in equilibrium, even though managers can exploit asymmetric 
information about their ability to raise capital from investors.  We exploit the timing of new fund 
launches in the hedge fund industry to distinguish between agency and capabilities effects in firm 
product diversification decisions, using a large survivor-bias-free panel dataset on the hedge fund 
industry 1994-2006.  Empirically we show that firms’ excess returns are high relative to other firms 
prior to diversification and fall within-firm following diversification, but are six basis points higher per 
month per unit of risk in diversified firms compared to a matched sample of focused firms.  The 
evidence suggests that managers exploit asymmetric information about their own ability to time 
diversification decisions; yet, the discipline of markets ensures that better firms diversify on average.  
The results provide large sample empirical evidence that agency effects and firm capabilities both 
influence diversification decisions. 

 

 
1. Introduction 

Scholars have long advanced the idea that diversification creates value by enabling firms to apply 

their unique capabilities across multiple products (Teece 1980, Panzar and Willig 1981).  By contrast, the 

diversification discount literature proposes that managers diversify for private gain even when doing so 

destroys firm value (Lang and Stulz 1994, Berger and Ofek 1995), a perspective that draws heavily on 

agency theory (Jensen and Meckling 1976).  While capabilities and agency theories make different 

predictions about the effect of diversification on firm performance, they are not mutually exclusive with 

respect to the causes of diversification.  In this paper, we integrate the predictions of capabilities and 

agency theories into a simple equilibrium model and use the model to predict a broad pattern of returns 

before and after diversification events.  We then test the predictions of the model, using a series of 

econometric tests that identify capability and agency effects in the decision to diversify.   
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The model integrates the predictions of agency and capabilities theories in a straightforward way.  

Firms are more likely to diversify when they possess unique skills and knowledge in one domain, 

enabling them to generate higher future returns in a related activity (Peteraf 1993; Bernard, Redding and 

Schott 2010).  However, agency theory implies that lucky firms are also likely to try to diversify if they 

can use idiosyncratic performance shocks to extract value from investors (Jensen 1983).  We explore the 

rich interplay amongst skill, luck, performance, and diversification to show conditions under which firms 

will be more likely to diversify.  The key insight from the model is that when managers require external 

capital to expand, less skillful firms always have weaker incentives to diversify given a particular track 

record. The intuition behind this result is that while managers are able to increase their own compensation 

in the short-run by diversifying, the attractiveness of diversification depends not only on investors’ 

current beliefs but also on their expected future beliefs.  Since firms reveal their true type through 

performance over time, and do so even faster when they diversify, as in Cabral (2000), less skillful firms 

always have weaker incentives to diversify given a particular track record. 

We test the predictions of the model in the context of the $1.7 trillion hedge fund industry (Hedge 

Fund Research 2010), using a large and rich panel dataset on 1,353 hedge funds from 1994-2006.  The 

hedge fund industry offers a unique laboratory for studying capabilities and agency effects.  As residual 

claimants of funds, investors are exposed to managers’ incentives to misrepresent their skill ex ante, 

which managers may take advantage of by raising money to launch additional funds when the firm 

experiences a lucky streak.  Thus, the hedge fund context facilitates a test of ex ante agency costs, or 

timing effects, associated with diversification.  Another advantage of the hedge fund context is that firm 

performance is readily measureable at the product (fund) level over relatively long periods of time, which 

allows us to separate persistent skill effects from idiosyncratic shocks.   

The pattern evident in the data is striking.  Excess returns are well above the sample mean prior to 

diversifying and fall rapidly following the launch of a second fund.  However, after matching diversifiers 

to non-diversifiers, based on all the observable differences ex ante, diversifiers outperform non-

diversifiers.  Consistent with the agency cost literature, the results suggest managers time diversification 

decisions to exploit asymmetric information about their own ability to private advantage; yet, market 

forces constrain lower ability firms’ expansion options.  Thus, firms launching new funds tend to possess 

greater investment skill than firms that remain focused, and are able to leverage their investment skill 

across new funds in a manner consistent with the capabilities literature.   

In the remainder of the paper, we develop our argument in more detail. In the following section, we 

introduce our model of diversification and derive the above described predictions.  In Section 3, we 

examine the hedge fund industry and describe the data.  In Section 4, we develop our empirical 

specification and discuss the results. In Section 5, we offer conclusions. 



3 
 

2. Skill, Luck and the Multiproduct Firm 

A number of papers, using agency cost logic, have shown that there are costs associated with 

diversification:  in internal capital markets (Lamont 1997); hierarchical management structures (Rajan, 

Servaes and Zingales 2000; Scharfstein and Stein 2000); and in managements’ span of control (Schoar 

2002).  However, studies using Coasian (1937) logic, fine-grained micro-data (Villalonga 2004), and 

controls for endogeneity (Campa and Kedia 2002) have raised questions about whether the costs of 

diversification systematically exceed the benefits of diversification, or if the early results are artifacts of 

the data or methods.  This paper takes a step toward reconciling the ostensive conflict between agency 

theory and the Coasian (1937) tradition, reflected in recent empirical work and in the capabilities 

literature on diversification.  By shifting the emphasis away from the ex post costs of diversification 

toward the ex ante costs, the costs investors bear when managers time their investments to take advantage 

of asymmetric information, which more closely map to the original basis for agency theory, the paper 

shows how the agency cost literature and the capabilities literature complement one another.   

In the remainder of this section, we develop a formal model of diversification in the presence of skill 

and luck that builds on and extends the capabilities and agency cost literatures in the context of 

diversification.  We define skill as an inimitable rent-generating capability (Barney 1986).  We also 

follow the capabilities literature by focusing on the role of skill transference across products in the context 

of related diversification.  For tractability, we tailor the analysis toward the hedge fund industry, though 

we also discuss how the model generalizes to other contexts.  In our context, skill can be characterized as 

investment ability, a conception of skill that is closely related to forecasting skill in the sense that firms 

possess heterogeneous ability with respect to anticipating future payoffs from current investments 

(Makadok and Walker 2000, Pierce 2009).  Skills are transferable across products to the extent that 

investment ability in one strategy class is correlated with investment ability in another strategy class.   

Though we do not explicitly measure relatedness in our empirical work, hedge fund diversification 

would appear to satisfy any of the standard measures of related diversification.1  The relatedness 

assumption is important because the capabilities literature has long argued that firm resources, tangible or 

intangible, are more readily transferable across related products (Wernerfelt and Montgomery 1988, 

Silverman 1999).  Thus, the logic for why higher skilled firms might expand horizontally into related 

products is similar to the argument for why firms expand the vertical scope of the firm.  By extending 

their capabilities into related activities upstream or downstream, high ability firms can create value by 

expanding the scope of the firm.  We extend the capabilities literature by formalizing the idea that higher 

                                                 
1 Relatedness is typically defined using SIC codes or by evaluating whether the two business units have similar 
activities, resources, skills, customer groups, and physical bases.  Our study of new fund launches by hedge funds 
meets either definition of related diversification. 
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skilled firms are more likely to diversify in the context of an equilibrium model that also takes agency 

costs into account.    

In our model, managers are classic agents, as in Jensen and Meckling (1976), who are purely self-

interested and actively seek the opportunity to use asymmetric information to exploit investors.  While the 

model builds on the seminal notion of agency costs, by examining how managers use asymmetric 

information for private gain, our approach differs from agency theoretic models that assume managers 

can exploit internally generated free cash flow to fund the firm’s expansion (Jensen 1983).  Instead, we 

focus on agency costs that operate through asymmetric information managers hold about their own ability 

when tapping external capital markets. 

Investors are perfectly rational in our model.  They actively seek out managers who are the most 

likely to deliver the highest future risk-adjusted returns, while harboring no illusions about managers’ 

private incentives and information.  Given asymmetric information between managers and investors about 

the managers’ true ability level, investors make inferences about managerial skill based on all available 

information about the firm; particularly, the information embedded in each of the firm’s funds’ past 

returns and their previous decisions whether to diversify.  Based on their posterior beliefs about quality, 

investors allocate capital to managers, where the capital allocations are correlated with firm performance.  

However, only managers know their true investment ability.  Investors only receive a noisy signal of the 

managers’ ability based on its track record, which opens the door for managers to exploit their 

asymmetric information for private gain. 

Managers know that investors are rational and will use all observable information about the firm to 

form beliefs about the firm’s managers’ underlying ability, expecting that investors update their beliefs in 

each period.  Managers also know investors can be fooled temporarily by idiosyncratic performance 

shocks, but that diversification reveals more information about the firm by sending multiple signals to 

investors about the firm’s true ability in any given time period (Cabral 2000).  Thus, the manager’s 

problem is whether and when to diversify, based on the firm’s performance track record and their true 

ability, while the investor’s problem is where to invest.  The solution to the joint optimization problem 

delivers several testable predictions about the pattern of returns around diversification events. 

 

A. Model Setup 

There are N investment managers, indexed j = 1,…N, and a (representative) investor I.  In each 

period, the investment managers produce returns according to: 

jtjjtr εθ += , 



5 
 

where jtr  is the period’s excess return above the risk-free asset for investment manager j, jθ  is a firm’s 

capability level or, specifically, the investment skill of the manager, and jtε  is a random shock. Further, 

we assume for simplicity that jtε ~ i.i.d. with E( jtε )=0 and V( jtε )=
2

εσ , which means E( jtε ktε )=0 for 

j≠k and E( jtε jsε )=0 for s≠t. 

Each investment manager has zero cost to operate their first fund.2 If a manager decides to launch 

a second fund, they pay a cost jc  in the period when the second fund is launched, a decision tracked by 

an indicator variable jtd

 

which is one if a second fund is launched in t or zero otherwise. 

If a second fund is launched, we denote each of the funds with a superscript l and assume that 

returns are generated according to 
l

jtj

l

jtr εθ += , where 0),( >m

jt

l

jtE εε  for l≠m.
3
  Thus, firm j’s 

capabilities are defined by a draw from the underlying distribution of θ, and they are manifest in a within-

firm correlation in performance, which we denote jρ , between funds.   

An investment manager’s payoff in period t is simply: 

,

21

jjtjtjtjt cdwwu −+=  

where the 
k

jtw  is the weight I assigns to manager j’s fund k in period t.  If a second fund does not exist in 

a particular period, then 02 =jtw . In other words, the payoff is increasing linearly in the allocation weight 

the investor gives to the investment manager’s funds, less the cost of the fund. The equation is intended to 

be a simple version of a profit function for the investment manager, where the costs are fixed and the 

revenues are proportional to assets under management (AUM).  

Further, the investment manager’s multi-period utility function is simply: 

∑
=

−=
T

t

jt

t

j uv
1

1δ  

Each investment manager’s type is characterized by the pair },{ jj cθ  where 





=
otherwise

pyprobabilitwith
j

0

1
θ  

                                                 
2  We make the assumption that an existing firm has already sunk the costs necessary to operate an initial fund for 
analytic convenience.  It has no bearing on the substantive analysis.  
3 To make the model tractable, we assume investment skill is constant across funds within a firm.  A more general 
model might allow investment skill to vary within a firm, based on how closely related the new fund is to the firm’s 
existing fund.  While introducing variation in investment skill would be an interesting extension of our model, our 
results will continue to hold as long as investment skill is positively correlated between funds within a firm. 
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and )(~ chc j , where  h(c) is a continuous distribution with associated cumulative distribution function 

H(c).  Further, we assume that that the two types are drawn independently so that 0),( =jjcCorr θ .4  

The investor has a standard mean-variance utility function.  In each period, the investor obtains ex 

ante utility of: 

wwwu t

T

tt

T

tIt Ω−= '
2

λ
µ       (1) 

where w is a vector of allocation weights, µ is a vector of expectations of excess returns, Ωt is the ex ante 

variance-covariance of returns the investor faces, and λ is a parameter measuring I’s risk aversion. As 

with the investment manager, the investor obtains a multi-period utility, which is the discounted sum of 

the ex ante expected utilities, namely 

∑
=

−=
T

t

It

t

I uv
1

1δ . 

In the foregoing, we assume that the investor, in each period, acts myopically with respect to (1). 5   

In each period, the investor solves the problem in (1) and allocates their capital, and the investment 

manager chooses, at the beginning of the second period, whether to launch a new fund.  Therefore, in the 

3-period model, the sequence is as follows. In the first period, Nature draws a type for each investment 

manager j; investor I chooses a vector of weights 1w  to each fund; returns are realized and period payoffs 

are obtained. In the second period, each investment manager chooses whether to launch a second fund 

(dj2); investor I chooses a vector of weights 2w  to each fund; returns are realized and period payoffs are 

                                                 
4  In this set up, θ can be thought of as investment skill—as it measures how effectively a manager generates excess 
returns for investors; and cj can be thoughts of as managerial skill—as it measures how economically a hedge fund 
firm can provide its investment skill to investors. As we will see later, these dual sources of uncertainty play a 
crucial role in the asymmetric information problem between managers and investors. 
5 The results of Samuelson (1969) and Merton (1969, 1971) show that this reduced form assumption will hold under 
various conditions (with rebalancing) that could easily be specified here with no material effect on the analysis.  It is 
important to note that in this case, the conditions for myopia are potentially complicated by the strategic aspects of 
the game for both investors and investment managers. In particular, because there is potential information revealed 
after each round about the investment manager’s type, it may be possible that fully rational investors would shade 
down their allocations in order to account for the reduced risk introduced by type uncertainty in every round. Indeed, 
this intuition that investors shade their allocations in early periods because of greater uncertainty and allocate more 
in later periods is correct, but in the game is driven by the fact that posteriors—including uncertainty about types—
after each round are weakly more precise. That said, there is no additional effect (i.e. holding back capital for the 
known higher risk-adjusted returns later) since the extant results are invariant to changing opportunity sets (see 
Campbell and Viceira 2002). If one knows that future risk adjusted returns will be higher than present ones, one 
would still like to have more capital to deploy in those later periods—since it will maximize final consumption or 
wealth. That causes one to optimally take risk given the current period’s opportunity set. 
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obtained.  Finally, in the third period, investor I chooses a vector of weights 3w  to each fund, returns are 

realized and period payoffs are obtained.6 

 

B. Model Results 

To solve this game, we use the equilibrium concept of Perfect Bayesian Equilibrium (PBE), so 

equilibrium actions must be sequentially rational and beliefs of the players must be consistent with Bayes’ 

Rule on the equilibrium path. We derive three primary results which we then evaluate empirically. First, 

firms that have enjoyed above average performance are more likely to diversify. Second, ex post on 

average firms that diversify perform worse than they did ex ante. Finally, we show that given a particular 

pre-diversification track record, those with greater investment skill will diversify at a higher rate than 

those with lesser investment skill.  Collectively, the results imply that diversifiers will revert to the mean, 

but not as strongly as non-diversifiers with the same pre-diversification performance. 

In order to derive these results, we start with an analysis of the behavior of the investor. Consider the 

investor’s problem. Let tµ  denote a vector with K elements indexed by jl, for each fund in the 

opportunity set, of expected returns in period t to each fund.   

Given these characteristics, in period t, the investor’s optimal allocation is: 

 

λ
tt

t

µΩ
w

1
*

−

= .      (2) 

 

This setup has a number of features that substantially simplify characterization of the equilibrium of 

the game. Perhaps most notable is a result from the standard Capital Asset Pricing Model (Sharpe 1964): 

that the weights to managers are independent since manager returns are drawn independently and there is 

no full-investment constraint. Further, although weights to managers are independent, weights to different 

funds, provided by the same manager, are not independent because the error in estimating a manager’s 

skills creates correlated risk across a manager’s funds for the investor. Said differently, the ex ante 

uncertainty in a manager’s returns is common across all of their funds, since all of the returns are drawn 

from the same underlying distribution, and is the sum of the error in estimating θj and the random error in 

their return generating process.   

We now turn to our results concerning diversification. As with many signaling models, in this 

model there exists a pooling equilibrium in which no one ever diversifies. This is a straightforward 

                                                 
6  Note, we adopt the notation that when we drop the subscript t from djt, the indicator variable dj simply indicates 
whether a manager has chosen to diversify. 
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application of the fact that off path beliefs are unconstrained by PBE. Thus, investors could believe that 

any diversifier is a low type, and that on the equilibrium path the probability that any manager is a high 

type is p. These beliefs will guarantee that diversification never occurs in equilibrium.  

What about equilibria in which some diversification occurs? As a first step to answering this question, 

we establish a result which must hold in any equilibrium in which diversification occurs. We will then 

turn to the task of establishing the existence of a particular form of equilibrium.  

Consider first how such an equilibrium may behave. In particular, one might think that firms with 

identical track records, in the first round, will make identical decisions about whether or not to launch a 

new fund. In fact, this intuition is not correct. To see this, consider the calculus behind launching a new 

fund for a set of managers with a history ),( drt , where tr  indicates the manager’s returns up to period t, 

and d indicates whether a manager has diversified. A manager will diversify if and only if the expected 

payoff from diversification is greater than the expected payoff from non-diversification: 

 

jcrwrwErwrwrwErw −+++≤+ ))1,())1,(()1,()1,())0,(()0,( 2

2

32

1

31

2

21

1

22

1

31

1

2 δδ .                  (3) 

 

The left hand side of (3) is the expected payoff for staying focused: the sum of the size of the allocation to 

the manager’s only fund in the second period and what the manager can expect to be allocated in the third 

period. Importantly, this latter value will be a function of investors’ beliefs about the manager’s type at 

the end of the first period and the expected return of the manager in the second period. The right hand 

side is a similar expression for the expected payoff for a manager who chooses to diversify.7  

Rearranging terms, we have the result that if diversification is an equilibrium, a firm will diversify if 

and only if their costs to launch a new fund are below a critical level )( 1rc
crit

j : 

 

))]1,(()1,([))]0,(())1,(([)]0,()1,([)( 2

2

31

2

22

1

32

1

31

1

21

1

21 rwErwrwErwErwrwrcc
crit

jj δδ ++−+−=≤
  

(4)
 

 

The inequality in (4) illustrates the tradeoff for the manager. First, in order to diversify, the manager must 

pay jc , which is captured on the left side of equation 4. Second, because returns are ex ante correlated, 

the allocation weight investors give to the original fund in the first period will be unambiguously lower 

than it would have been in the absence of the launch of a second fund. This is captured by the term 

)0,()1,( 1

1

21

1

2 rwrw −
 
in (4), which one might call a cannibalization effect:  diversification is costly to the 

                                                 
7 Note that incorporated in (3) are any beliefs the investor may have after first and second period returns, conditional 
on diversification. 
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firm, on the margin, in terms of lowering investor allocations to fund 1. There is also a potential for either 

a lower or higher weight to fund 1 in the third period, depending on the expectation of the weight given 

r1.  Simply put, mean reversion implies that, if r1 is below the manager’s type, in expectation, the 

manager’s returns in future periods will be higher, and if it is above the manager’s type, in expectation, it 

will be lower. Moreover, with the launch of the second fund, the manager should expect to be closer to 

the mean return (their type θj) than in the case where they do not launch a second fund at every point in 

time in the future.  Since investors update their beliefs of a manager’s type based on the additional 

information embedded in the second fund’s returns, diversification creates a track record dilution effect, 

which is captured by the term ))]0,(())1,(([ 2

1

32

1

3 rwErwE −δ  in (4), as in Cabral (2000). Finally, these 

(potential) costs will be compared with an unambiguous benefit. Because investors are assumed to be 

unconstrained in borrowing, investors face no tradeoff in allocating to the second fund.  Thus, a second 

fund produces incremental revenue for the firm’s managers and, therefore, managers will always be better 

off when they diversify, conditional on cannibalization, track record dilution, and diversification costs. 

We refer to the unambiguous benefits of diversification as the scope extension effect, which is captured by 

the term ))1,(()1,( 2

2

31

2

2 rwErw δ+ . 

Even though managers with identical histories will be treated symmetrically by the investor in period 

two, managers with lower investment skill will have less strong incentives, for every level of realized 

returns in period 1, to launch a second fund because their expectation of future performance depends on 

their type.  The fact that second period performance, in expectation, is lower for low skilled managers 

means they can expect lower allocations in the third period and, therefore, will be less willing to launch 

an additional fund. In other words, in any diversification equilibrium )()( 1

*

1

* rcrc LH ≥  where )( 1

*
rc j

denotes the equilibrium )( 1rc
crit

j  for a type j. This conclusion is summarized as: 

 

Lemma 1. Conditional on first period returns 1r , in any equilibrium in which there is 

diversification, the probability a high type will diversify is higher than the probability a 

low type will diversify.  

 

To pin down our analysis further, we return to the issue of pooling equilibria. One feature of this 

model is that after the first period, there is no dependence between the equilibria that are played for a 

given path r1. This means that if separation occurs in equilibrium for some r, it could be the case that for 

an arbitrary small value η there could be pooling for r1+η. In fact, this leads to the possibility that 

measures of r1 alternate between pooling and separation.  Because each unique “slice” of r1  may pool, 
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there are equilibria in which at lower levels managers may separate, while at intermediate levels they may 

pool, and at higher levels they return to separation. That said, other equilibria also exist to this game.  In 

fact, as our intent is simply to provide sufficient conditions for the dynamic we describe above, we show 

there are also equilibria in which low-cost firms diversify and high-cost firms do not.8

 
 

 

Lemma 2. There exists an equilibrium in which for sufficiently low costs, managers will diversify 

and otherwise will stay focused.  

 

We now turn to our primary result.  In the appendix, we construct an equilibrium such that managers 

with very low returns in the first period all stay focused, managers with very high level of returns 

diversify, and managers in the “middle” diversify only when their costs are sufficiently low. Such an 

equilibrium—along with the fact that higher quality managers in any equilibrium with diversification 

diversify at higher rates given their track record—allows us to establish the existence of an equilibrium to 

the game with three testable properties. Result 1, summarizes the characteristics of this equilibrium. 

 

Result 1. There exists an equilibrium in which the following three properties hold:  

(i) Diversifiers will outperform non-diversifiers in the pre-diversification period:

)0|()1|( 11 =≥= jjjj drEdrE . 

(ii) In expectation, the performance of diversifiers will fall after diversification:

)1|()1|( 1

21 =≥= jjjj drEdrE . 

(iii) Conditional on first period returns, diversifiers will outperform non-diversifiers:

)0,|()1,|( 1

1

3

1

21

1

3

1

2 =+≥=+ jjjj drrrEdrrrE . 

 

At this point, the intuition behind each component of Result 1 follows straightforwardly from the 

earlier results. The first result that non-diversifiers will under-perform diversifiers, prior to diversification, 

is driven by two facts: cost cutoffs are weakly increasing in first period returns and the more skillful 

managers are more likely to diversify conditional on any 1r .  The second result follows from the same set 

of facts, namely that the probability of diversifying is increasing in the first period return, which in turns 

means it is increasing in the random shock to a manager’s return. In expectation, therefore, the post-

                                                 
8 While the equilibria is not unique, the equilibrium we study is a natural one to study. If we confine the analysis to 
look at the maximally separating equilibrium, then the cutpoints will be increasing, assuming they exist. The 

intuition for this result is that both the maximum cutpoints of both types are increasing in 1r . Moreover, as we show 

in the appendix, these can both hold simultaneously, which means maximal separation occurs when cutpoints are 
increasing.  
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diversification return must fall. Finally, the last component:  conditional on first period returns, the 

returns of diversifiers will fall less in expectation than non-diversifiers follows directly from Lemma 1. 

Since high-skilled types will be more likely to diversify conditional on first-period returns, they will have 

a higher expected return post-diversification than non-diversifiers. This, in turn, makes rational investors’ 

beliefs about the diversifiers.  Figure 1 illustrates our three predictions graphically. 

Our theory predicts a pattern of returns that is broadly consistent with a set of stylized facts, reported 

in the literatures on diversification and investment firms.  Fund managers’ private incentives influence 

their strategic choices (Chevalier and Ellison 1997).  Legacy business unit (fund) returns fall following 

diversification (Schoar 2002), particularly when preceded by unusually strong reported performance 

(Teoh, Welch and Wong 1998); yet, firms with the best track record tend to launch new funds and their 

performance tends to persist relative to a control group (Kaplan and Schoar 2005).  Our model explains 

these stylized facts in a simple testable equilibrium framework.9  Neither agency effects nor capabilities 

alone can explain the full set of results demonstrated.  Other theories might explain some of our results, 

but cannot generate the full set of results predicted either.  For example, Roll’s (1986) hubris argument 

might explain why firms that experience an idiosyncratic performance shock diversify and then suffer 

declining returns because they develop excessive pride based on their track record.  However, hubris 

cannot explain why diversifiers outperform firms that remain focused. 

The hedge fund industry is somewhat unique, and so caution should be applied in generalizing the 

model to other industrial contexts.  Hedge fund firms diversify by launching new funds, which are 

investment products that deliver a stream of cash flows.  Thus, hedge funds require new investment to 

diversify.  Furthermore, hedge fund customers are also investors.  While hedge fund diversification is 

similar to product diversification in industrial companies, in the sense that the performance of each new 

product impacts the firm’s overall reputation (Wernerfelt 1988; Cabral 2000), industrial customers are not 

typically investors, and industrial investors cannot usually choose which of the firm’s products to invest 

in.  To the extent that product performance is not be as volatile in industrial markets, agency costs 

associated with market timing around peak performance may be less important.  On the other hand, 

agency costs will tend to be more severe when managers have access to free cash flow and do not have to 

                                                 
9 Cabral (2000) develops a related model in which firms extend their existing brands when both quality and returns 
of earlier products are jointly sufficiently high. That said, Cabral (2006) provides a modification of his model to 
apply specifically to unrelated diversification and shows that, in this context, lower skilled managers may have 
greater incentives to diversify given that their “anchor” product is not that valuable.  MacDonald and Slavinski 
(1987) provide a general equilibrium model in which some firms diversify and others do not, much like our model.  
Berk and Green (2004) provide a model similar to ours, in which firms have heterogeneous abilities to generate 
returns and investors rationally invest; however, in equilibrium, investment managers’ decisions result in little 
persistence in outperformance. Our model also has some similarities to Bar-Isaac (2003) who develops a model in 
which reputations of sellers are learned slowly.  He analyzes an equilibrium in which good sellers who know their 
quality may continue to sell in the face of bad reputation in order to have more “draws” to reveal their true type, but 
bad types may stop selling in the face of a bad reputation.  
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tap external capital markets to fund their diversification strategies (Jensen 1983).  Nevertheless, the model 

proposed is general, and the hedge fund industry is interesting to study as we discuss below. 

 

3. Data and institutional context 

Hedge funds are closed to the general public and are not required to publicly report their returns.  

However, a large number of funds do choose to report their returns to one or more private companies that 

make their data available by subscription.  Our data on hedge funds, from Lipper-TASS (TASS) and 

Hedge Fund Research (HFR), was provided to us for research purposes by a major financial institution.  

The data series begins in 1977, but only includes “graveyard” funds, funds that stopped reporting to the 

data providers for any reason including fund failure, from 1994.  We use the survivor bias free subsample 

of the data 1994-2006 as our main sample, though our results are robust to using the full sample as well.  

Taking TASS and HFR together, we have coverage on 3,102 firms over the period 1994-2006, 

representing approximately 25% of the firms in the industry.   

Consistent with the standard definition of diversified firms as multiproduct firms and with the 

literature on mutual fund product diversification (Siggelkow 2003), we consider hedge fund firms to be 

diversified when they operate multiple funds.  With the exception of onshore/offshore and currency twin 

funds, which we consider a single fund in our sample, hedge funds generally launch new funds with 

distinct investment objectives and/or trading strategies compared to their existing funds.  Thus, 

diversification is usually distinct from expansion in the context of hedge funds. 

Amongst all the datasets used in the hedge fund literature, TASS and HFR are considered the most 

comprehensive (Li, Zhang and Zhao 2008).  While most researcher rely on either one or the other, we 

believe this is the first paper to integrate these two datasets, making our dataset the largest survivor-bias 

free dataset assembled to date on hedge funds.  However, the data do have some important limitations.  

Firms choose whether to report their data to HFR and TASS, presumably out of self-interest; therefore, 

the data may be subject to selection bias.  While we do not know what decision making processes lead 

firms to self-report their data, based on our discussions with hedge fund managers, we believe hedge 

funds are more likely to self-report to TASS and HFR when they are interested in raising capital at some 

future date for expansion of their existing fund and/or for expansion through product diversification.  

Thus, although our results may not generalize to hedge funds that do not require external capital to 

expand, this limitation does not represent a major problem for our research as we are explicitly interested 

in studying firms that require external capital to expand. 10  Due to small variations in spelling and 

                                                 
10 Annual returns reported to investors are audited, which limits the scope for misrepresentation for most firms.  
However, firms might manipulate monthly returns within a year for strategic reasons.  We rely on our empirical 
design to deal with these effects.  Fortunately, the most obvious self-reporting bias is not a problem for our tests on 
firm skill, since strategic manipulation in anticipation of diversification would bias the results against our third 
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abbreviations, integrating the two datasets also requires some manual comparisons across datasets.  We 

had two research assistants perform the manual comparisons independently, and then resolved the few 

discrepancies through inspection. 

To make the analysis tractable, we examine the performance of a firm’s first fund before and after the 

firm’s first horizontal expansion (i.e. the launch of a second fund).  Our analysis, therefore, focuses on 

1,876 firms that enter the dataset as focused firms, 1,186 firms that remain focused, and 690 firms that 

subsequently diversify,11 excluding firms that enter as diversified firms, which we define as becoming a 

diversified firm within the first twelve months of entering the dataset, and funds that reported less than 

twelve months of returns or did not report returns continuously.  After matching diversified firms to firms 

that remain focused (described in detail below), our test sample consists of 37,657 fund-months from 

1,353 firms, of which 676 are diversified firms and 677 (one tie) are a matched set of focused firms.    

We test the predictions of the model using risk-adjusted excess returns as our baseline measure of 

firm performance.  Empirically, the appropriate measure of performance depends crucially on the risks 

against which performance is evaluated.  The recent financial crisis has raised questions about how well 

hedge fund risks are understood.  We, therefore, use a range of measures intended to control for 

systematic and non-systematic risk exposure and show that our results are robust to a wide range of 

plausible measures of performance.  Because there is general agreement in the literature that investors 

price financial assets controlling for systematic risk exposure, we assume hedge fund investors 

benchmark performance against broad market indices as a first approximation of fund performance.  

Thus, we use standard asset pricing models to estimate excess returns in our baseline specification.  

However, hedge funds may also be exposed to non-systematic risks that are not priced by standard market 

benchmarks.  If funds take on significant non-systematic risks, perhaps through aggressive use of 

leverage, they may appear to generate higher average excess returns that are really an artifact of model 

mispricing.  We account for the non-systematic riskiness of a fund’s underlying investments using a 

dynamic version of the information ratio.  We also control for biases that may arise due to self-reporting, 

including serial correlation in the time series of returns using an autoregressive lag one (AR1) correction 

and for backfill bias by dropping the first reported monthly return.12  

                                                                                                                                                             
prediction (e.g., returns would fall more after diversification than without manipulation).  We address the possibility 
that diversified firms inflate their ex post returns using multiple years of lagged excess returns as our ex ante 
performance measure, which firms could only manipulate through more aggressive multi-year fraudulent behavior 
and by verifying that the results are robust to eliminating firms in right tail of the returns distribution. 
11 For legal reasons, many firms offer identical funds as onshore (U.S. domiciled) and offshore (non-U.S. domiciled) 
products.  We treat these onshore/offshore funds as a single fund.  We also treat funds that have identical trading 
strategies in different currencies as being a single fund. 
12 Posthuma and Jelle van der Sluis (2003) drop the first 36 months of returns to control for backfill bias.  We drop 
the first month of recorded return data as we found that only the first reported monthly return was significantly 
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Our baseline performance benchmark follows the emerging standard for assessing hedge fund 

performance (Sadka 2010).  The performance measure is developed based on Fung and Hsieh’s (2001) 7-

factor asset pricing model, which is specifically designed for pricing risk in hedge funds by controlling 

for exposures to linear and non-linear equity, bond, commodity, and option-based risk factors.  We 

augment Fung and Hsieh’s (2001) model by including a “traded liquidity factor” from Pastor and 

Stambaugh (2003), which controls for a fund’s exposure to illiquidity risk.  Excess returns are the sum of 

a time-invariant fund-specific term a plus a mean zero residual e from the regression:  

 

   Rit = ai + Rft +XtBi + eit,     (5) 

 

where i and t index funds and time (in months) respectively.  Ri is a fund’s raw return from TASS and 

HFR and the vector X contains the seven risk factors from Hseih’s data library and the traded liquidity 

factor from Stambaugh’s website.13  The term ai is the time invariant component of a fund’s performance 

and e is the residual.  We compute a, the coefficients on X and e by running 1,876 fund-level longitudinal 

regressions.  Excess returns Y for firm i in any period t are defined as Yit=ai+eit, where excess return 

captures the combination of a fund’s skill and luck relative to a market benchmark.  We call the resulting 

measure “8-factor excess returns.”  We then compute the (dynamic) information ratio as excess returns 

(Yit) divided by the standard deviation of excess returns.  Both the information ratio and excess returns are 

winsorized at the 1% and 99% level to control for extreme values, though doing so has no meaningful 

impact on our results.  We also replicated all of our results using Fung and Hsieh’s (2001) 7-factor asset 

pricing model without the Pastor-Stambaugh (2003) traded liquidity factor, as well as using a more 

traditional passive benchmark commonly employed for evaluating mutual funds, the Fama-French three-

factor model (1996) plus a momentum factor (Carhart 1997).14 

We use excess returns as a dependent variable in our regressions of performance on diversification.  

We also use excess returns to compute average cumulative abnormal returns (CAR), where CAR = Σ Yin/n, 

the sum of n lagged excess returns divided by the number of months the firm was in operation at time t, a 

standard measure of a fund’s cumulative historical performance, in a probit model predicting the launch 

of a new fund.  We use average two-year CAR as our key performance variable predicting the launch of a 

new fund.  We verify that we obtain similar results with longer lagged CAR measures and measures of 

CAR that give more recent observations more weight than older observations.   

                                                                                                                                                             
different from long-run average returns. Dropping additional months has little effect on our point estimates but does 
lead to noisier estimates as most firms in the sample diversify within the first 36 months of their existence. 
13 The Pastor-Stambaugh series is available at http://finance.wharton.upenn.edu/~stambaug/ liq_data_1962_2008.txt.  
Hseih’s data library can be found at http://faculty.fuqua.duke.edu/~dah7/HFData.htm 
14 Results using 4-factor and 7-factor excess returns (and the corresponding information ratios) are reported as 
robustness checks in Table 4.  
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Table 1 shows descriptive statistics for the main sample, including our excess return and information 

ratio measures.  On average, the funds in our baseline sample generated 37 basis points of risk-adjusted 

(excess) returns per month with a standard deviation of about 4% per month.  Adjusting for non-

systematic risk exposure, using the information ratio, the average fund generated 17 basis points of excess 

return per unit of risk with a standard deviation of about 1% per month. 

Table 1 also shows descriptive statistics for the control variables drawn from TASS and HFR, 

including size, measured by assets under management, investment strategy, time and regional location.  

The average fund had $100 million of assets under management (AUM), while the average firm held 

$147 million of AUM.  The size distribution of AUM is skewed right with the top 1% of funds growing to 

$1.9 billion.15  We take the non-normality of AUM into account by using AUM size deciles from the 

overall distribution of all TASS and HFR funds and firms.  Our results are unchanged when we use the 

log of AUM instead of using size deciles.  11% of fund-months had missing AUM, which we control for 

using a missing AUM dummy variable. 16   

We report the composition of the sample by calendar year in Table 1, but we use periodicity in three 

ways in our analysis:  (i) thirteen year fixed effects control for hedge-fund specific calendar time effects; 

(ii) market returns for 132 calendar months control for time series variation in market returns in our 

computation of excess returns; and (iii) thirty-six event time categorical variables control for the time path 

of returns after the launch of a new fund (or match date) in our matched tests. 

The hedge fund industry is a global industry, though approximately two-thirds of the fund-months in 

our sample are based in the United States.  To the extent that regional differences influence diversification 

decisions, we also control for the location of the firm’s headquarters where appropriate.   

 

4. Empirical specification and results 

A. The propensity to diversify 

Our first prediction is that diversifiers will outperform non-diversifiers in the pre-diversification 

period.  To generate evidence in support of Result 1(i), we test whether firms tend to launch new funds 

when they experience unusually strong performance.  We drop diversifying firms17 from the analysis 

                                                 
15 AUMs are reported winsorized at the 1st and 99th percentile, though winsorizing has no effect on the results. 
16 23% of returns come from long/short funds – a general type of fund that often has no meaningful restrictions on 
investment strategy.  19% of funds reported that they were fund-of-funds that invest in other hedge funds.  The other 
58% of funds were distributed over 32 additional investment strategy categories, with the largest being equity hedge 
(9%), managed futures (9%), and event driven (7%) strategies.  No other strategy category had more than 5% of 
fund-months.  Fund of funds take positions in other hedge funds.  Since fund of funds are somewhat different from 
traditional hedge funds, we verified that they are not driving the results in the paper. 
17 Because our tests are performed at the level of the fund for a firm’s first fund only, we use “fund” and “firm” 
interchangeably in this section. 
 



16 
 

following the month in which they launch a new fund, while all fund months are included for firms that 

remain focused, and use the probit model: 

 

   LAUNCHit* = xitβ + ξit,    (6) 

 

where the unit of observation is the fund-month for fund i in month t.  We estimate the latent variable 

LAUNCH*, using LAUNCH = 1 [LAUNCH*>0] when the firm launches a new fund.  The vector x 

includes all observable characteristics of firms that might plausibly have an effect on the decision to 

launch a new fund including:  cumulative abnormal returns (CAR), average CAR for other firms in the 

same strategy class, ten fund size declines, where size is measured by assets under management (AUM), 

size of the strategy class, log firm age, 13 time (year) dummies, 10 fund investment strategy dummies, 

four regional geographic location dummies, and ξ is an error term, which is assumed to be normally 

distributed with mean zero and variance one.  Standard errors are clustered by firm. 

We show the result of estimates of the probit model (6), using 1,876 firms and 85,428 fund months in 

Table 2 columns 1-2.  Column 1 shows that the marginal effect of CAR on the propensity to diversify 

without controls is 0.079%, compared to a baseline diversification rate of 0.801% (690 new fund launches 

in 85,428 fund-months), and is strongly statistically significant.  In other words, doubling CAR from the 

mean increases the probability that the firm will launch a new fund in any given month by approximately 

10%. Column 2 shows the marginal effect of CAR on the propensity to diversify with controls.  The result 

continues to be statistically significant though the point estimate on CAR is smaller.  Holding all other 

regressors at their mean values and doubling CAR increases the probability of diversifying by 0.055%, 

which represents a 7% increase in the baseline diversification rate.  The evidence suggests that strong 

performance does indeed increase the probability that a hedge fund firm will launch a new fund. 

We also use the empirical model displayed in Table 2 column (2) as our baseline matching model.  

The baseline matching model uses all of the information embedded in returns and other observable 

characteristics of firms and funds to identify a valid control group of focused firms against which to 

measure performance after diversification.  Our objective is to find a matched set of focused firms that are 

similar to the set of diversifying firms along all observable dimensions just prior to diversification so that 

we can separate skill from luck effects ex post. 

We find and exploit a valid control group, using standard propensity score matching techniques.  

First, following Rosenbaum and Rubin (1983), we calculate the propensity score of the probability of a 

fund choosing to launch a new fund in any particular month, using the probit model (6).  Next, we trim 

the sample at the 1st and 99th percentile of the propensity score distribution and eliminate firms off the 

common support of the propensity score of the probability of launching a new fund.  Finally, we match 
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diversifiers to controls, using nearest neighbor matching without replacement, to create a balanced sample 

of 676 treated (diversified) and 677 control fund-month observations (there is one tie).  The interpretation 

of the control group is that for each fund that did diversify, in a particular month, we have identified the 

fund that was most similar in terms of all observable characteristics that did not diversify.   

Table 2 Columns 3-5 give measures of the effectiveness of the matching process.  Columns 3(a) and 

3(b) show the mean values for CAR for focused and diversifying firms, respectively, before matching.  

Column 3(c) tests whether CAR and the means on the control variables are statistically different between 

focused and diversifying firms.  Before matching, the differences in CAR, firm size, age strategy class, 

strategy size, year and region between focused and diversifying firms are statistically significant, and the 

overall F-test on the joint significance of the differences in means in very large, which suggests that the 

two populations are not statistically comparable.  Columns 4(a)-4(c) repeats these tests for the matched 

sample.  The statistical differences in size, strategy, and region are completely eliminated, while the 

difference in CAR is on the margin of statistical significance.  The differences in age and year are 

reduced, and the joint significance of the differences in the means is eliminated (F=1.23).  Comparing the 

differences in the means in the full sample with the matched sample reveals that matching substantially 

aligns the ex ante characteristics of the firms in the diversified and focused groups.  Figure 3 shows this 

effect graphically.  Figure 3a shows the kernel density plots of the distribution of the propensity scores for 

diversified and matched focused firms.  Whereas the distributions were quite different before matching, 

they are essentially identical after matching (Figure 3b).18   

 

B. Within-firm changes 

Our second key prediction, Result 1(ii), is that the performance of diversifiers will fall after 

diversification, a result that is evident even in a simple time-series plot of excess returns.  Figure 2 shows 

the relationship between fund performance and diversification graphically, plotting first fund average 

excess returns for the 676 diversifying firms in our test sample.  As Figure 2 shows, firms tend to 

diversify when excess returns are very high, and excess returns fall precipitously almost immediately 

following diversification.  We estimate within-firm changes in performance more precisely, using: 

  

Yit = α + λi + DIVERSIFIEDit + Tt + Xitβc+ εit,   (7) 

                                                 
18 To be sure that our ex post results are not being driven by ex ante differences in CAR, and that time-varying CAR 
thresholds are not driving our results, we use an alternative matching model where CAR is interacted with covariates 
that, in theory, might have a marginal effect on the relationship between performance and diversification, including 
firm size and calendar year.  Columns 5(a)-5(c) shows that the alternative matching regime eliminates the statistical 
differences between CAR and the calendar year fixed effects and slightly improves the F-test on the joint 
significance of the means.  Our results are robust to this alternative matching regime.   
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where i and t index funds and time (in months), respectively, for all first funds in firms that eventually 

diversify for five years before and after the diversification event; Y represents firm performance measured 

by excess returns and the information ratio; λ is a fund fixed effect; DIVERSIFIED is a dummy variable 

that is equal to one when a fund is part of a diversified firm and zero otherwise; T is a vector of thirteen 

calendar year dummies; and Xc is a vector of controls including the log of firm age, the log of assets under 

management (AUM) by market segment (“strategy”) and then fund size dummies measured by deciles of 

AUM, plus a dummy for missing AUM; and ε is the residual.  Standard errors are clustered by fund. 

Table 3 columns 1 and 2 show the results of the within-fund estimator (7).  Excess returns are 14 

basis points per month lower, following diversification.  The effect is only significant at the 10% level, 

but the p-value is 0.054.  Using the information ratio, performance is 4 basis points per month per unit of 

risk lower following diversification, and the point estimate is reliably different from zero.  Altering the 

time window around the diversification month had no meaningful effect on the results.   

Performance falls in hedge funds following diversification.  However, we know from the prior 

literature that the relationship between diversification and performance should always be evaluated 

conditional on the selection process firms undergo when choosing to launch a new business unit or fund 

(Campa and Kedia 2002, Villalonga 2004).  Table 3 and Figure 2 both show that returns are higher prior 

to the launch of a new fund, which might suggest that better performance causes hedge funds to launch 

new funds.  If true, then we would expect returns to naturally revert toward the mean following 

diversification.  To understand if hedge fund returns fall following diversification because diversification 

causes returns to fall, perhaps due to managerial distraction as in Schoar (2002) or whether skilled firms 

diversify when they are lucky as our model predicts, we use the matched sample of focused firms 

identified by our matching model. 

 

C. Matched sample ex post performance 

We compare ex post performance for diversifiers relative to firms that remain focused beginning from 

the diversification or match date for the 1,353 unique funds identified in our propensity score matching 

algorithm.  We call the period in which these funds launched a second fund or were matched “the event,” 

and refer to the periods around the event in terms of event time.  To construct our matched test sample, 

we examine the event (at time zero) and the thirty-six months after the event (0,1, 2, 3. . ., 35).  Altering 

the number of months in the regression following the event has no meaningful effect on the results.  We 

estimate the difference in ex post returns between diversifying firms and the matched set of focused firms, 

using the pooled OLS model (8): 
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  Yit = α + DIVERSIFIEDit + Tt + Xitβc+ εit,    (8) 

 

where i indexes firms and t indexes calendar time; performance (Y), DIVERSIFIED and T are as above in 

(7); and X includes log firm age, log of assets under management by strategy, and fund size dummies as 

in (7).  We also include in X five region dummies that control for location specific effects, and eleven 

strategy-type dummies to control for strategy-specific return patterns, as well as a vector of event time 

(month) dummies for the thirty-six months after launching a new fund (or match date for the control 

group) to control for the pattern of mean reversion following the event as predicted by our theoretical 

model; and ε is the residual.  Standard errors are clustered by fund.   

Table 3 shows the matched sample 8-factor ex post returns in columns 3 and 4.  Following 

diversification, excess returns are 18 basis points per month higher, and the information ratio is 6 basis 

points per month higher per unit of risk, in the first funds of diversified firms compared to a matched 

sample of non-diversifiers, and the coefficients are reliably different from zero.  The interpretation 

supports our contention that diversifying firms outperform firms that remain focused ex post, conditional 

on being similar across observable dimensions ex ante.19   

The overall pattern of evidence is consistent with a theory of diversification that takes both agency 

costs and capabilities seriously.  Managers time their diversification events around idiosyncratic 

performance shocks, but on average better firms diversify.  Neither agency costs nor capabilities alone 

can explain the full set of results observed, but together these theories explain the rich pattern of evidence 

observed in this study and in the literature more broadly.  The results herein exploit revealed skill ex post 

to show how agency effects and capabilities influence strategy decisions ex ante.  Thus, the key causal 

inference is that skill and luck cause a firm to diversify in a predictable manner, with skill effects 

dominating luck effects.   

 

5. Conclusion 

This paper integrates agency and capabilities theories into a simple equilibrium framework that yields 

rich predictions about the pattern of returns before and after diversification.  We test these propositions in 

the context of the global hedge fund industry 1994-2006.  The evidence supports agency theory’s 

                                                 
19 We verify that our results are not sensitive to including a longer data series of lagged returns to compute CAR, 
and/or by weighting recent returns more than older returns in event time (see Table 4 for the results after matching 
on 60-month weighted CAR).  We also found similar results using an alternative matching model, which forces ex 

ante returns to be more similar between diversifiers and non-diversifiers, and controls for the precise pattern of ex 

ante returns by calendar time (see Table 4 for the results using the alternative matching model).  Similar results were 
obtained when matching only on CAR.  Furthermore, we found similar results using firm-level performance as the 
dependent variable in (8), which implies that firms are not using their second fund to cross-subsidize the first (see 
Table 4 for firm-level results).  
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prediction that diversification decisions are influenced by manager’s private information and the 

predictions of the capabilities literature that horizontal firm growth is enabled by unique firm capabilities 

that can be leveraged across products within the firm.  Our key findings are that when firms need external 

capital to expand they will tend to diversify when they experience a positive idiosyncratic performance 

shock that raises their performance above their peers and above their long-run average; but, better firms 

diversify in equilibrium, even though managers appear to exploit asymmetric information about their true 

ability to time the market.  Thus, at least in the context of hedge funds, market discipline constrains lucky 

but lower skilled firms’ horizontal expansion choices.   

This paper sheds light on two of the most important explanations for why firms diversify:  agency 

costs and capabilities.  We provide an equilibrium explanation for how agency costs influence the firm’s 

decision to diversify even when diversification creates value on average, and present evidence consistent 

with these effects.  Moreover, we address one of the major criticisms of the capabilities literature—that it 

is tautological and inherently un-testable (Williamson 1999)—by providing large sample, well-identified 

evidence that capabilities influence diversification choices in a predictable manner.  Finally, we show 

how agency and capabilities theories are complementary perspectives in the context of diversification, 

and offer a road map for identifying the impact of both on diversification decisions. 

 

References 

Bar-Isaac, H.  2003.  Reputation and Survival: Learning in a Dynamic Signaling Model.  Review of 

Economic Studies 70, 231-251. 

Barney, J.B.  1986.  Strategic Factor Markets:  Expectations, Luck and Business Strategy.  Management 

Science 32(10) 1231-1241. 

Berger, P.G., E. Ofek, 1995.  Diversification’s Effect on Firm Value.  Journal of Financial Economics 

37(1) 39-65. 

Berk, J.B., R.C. Green.  2004.  Mutual Fund Flows and Performance in Rational Markets, Journal of 

Political Economy 112(6) 1269-1295 

Bernard, A.B., S.J. Redding, P.K. Schott.  2010.  Multiple-Product Firms and Product Switching, 

American Economic Review 100(1) 70-97. 

Cabral, L.M.B.  2000. Stretching Firm and Brand Reputation. RAND Journal of Economics 31(4) 658-73. 

Cabral, L.M.B.  2006. Diversification Bias and Diversification Discount. Working Paper. 

Campa, J.M., S. Kedia. 2002. Explaining the Diversification Discount, Journal of Finance 57(4):1731-62. 

Campbell, J.Y., L. Viceira.  2002.  Strategic Asset Allocation for Long-term Investors.  Oxford University 

Press. 

Carhart, M.  1997.  On Persistence in Mutual Fund Performance.  Journal of Finance 52(1) 57-82. 



21 
 

Chevalier, J., G. Ellison.  1997.  Risk Taking by Mutual Funds as a Response to Incentives.  Journal of 

Political Economy 105(6) 1167-1200. 

Coase, R. H. 1937. The Nature of the Firm. Economica 4(16) 386-405. 

Fama, E.F., K. French.  1996.  Multifactor Explanations of Asset Pricing Anomalies.  Journal of Finance 

51(1) 55-84. 

Fung, W., D.A. Hsieh.  2001.  The Risk in Hedge Fund Strategies, Theory and Evidence from Trend 

Followers.  Review of Financial Studies 14(2) 313-341. 

Hedge Fund Research.  2010.  Global Hedge Fund Industry Report, First Quarter. 

Jensen, M.C., W.H. Meckling.  1976.  Theory of the Firm:  Managerial Behavior, Agency Costs and 

Ownership Structure.  Journal of Financial Economics 3(4) 305-360. 

Jensen, M.C.  1983.  Agency Costs of Free Cash Flow, Corporate Finance and Takeovers.  American 

Economic Review 76(2) 323-329. 

Kaplan, S.N., A. Schoar.  2005.  Private Equity Performance:  Returns, Persistence, and Capital Flows.  

Journal of Finance 60(4) 1791-1823. 

Lamont, O.  1997.  Cash Flow and Investment:  Evidence from Internal Capital Markets.  Journal of 

Finance 52: 83-109. 

Lang, L.H.P., R.M. Stulz.  1994.  Tobin’s q, Corporate Diversification and Firm Performance.  Journal of 

Political Economy 102(6) 1248-1280. 

Li, H., X. Zhang, R. Zhao. 2008.  Investing in Talents:  Manager Characteristics and Hedge Fund 

Performances.  SSRN Working Paper #990753. 

MacDonald, G.M., A. Slivinski.  1987.  The Simple Analytics of Competitive Equilibrium with Multi-

Product Firms.  American Economic Review 77(5) 941-953. 

Makadok, R., G. Walker.  2000.  Identifying a Distinctive Competence:  forecasting Ability in the Money 

Fund Industry.  Strategic Management Journal 21(8) 853-864. 

Merton, R.C.  1969.  Lifetime Portfolio Selection Under Uncertainty:  The Continuous Time Case, 

Review of Economics and Statistics 51(3) 247-257. 

Merton, R.C.  1971, Optimum Consumption and Portfolio Rules in a Continuous-time Model.  Journal of 

Economic Theory 3(4) 373-413. 

Wernerfelt, B., C. A. Montgomery.  1988.  Tobin’s q and the Importance of Focus in Firm Performance.  

American Economic Review 78(1) 246-250.  

Panzar, J.C., R.D. Willig, 1981, Economies of Scope, American Economic Review 71, 268-272. 

Pástor, L., R.F. Stambaugh.  2003.  Liquidity Risk and Expected Stock Returns.  Journal of Political 

Economy 111(3) 642-685. 



22 
 

Peteraf, M.A.  1993.  The Cornerstones of Competitive Advantage.  Strategic Management Journal 14(3) 

179-191. 

Pierce, L.  2009.  Big Losses in Ecosystem Niches:  How Core Firm Decisions Drive Complementary 

Product Shakeouts, Strategic Management Journal 30(3) 323-347. 

Rajan R, H. Servaes, L. Zingales.  2000.  The Cost of Diversity:  The Diversification Discount and 

Inefficient Investment.  Journal of Finance 55(1): 35-80. 

Roll, R.  1986.  The Hubris Hypothesis of Corporate Takeovers.  Journal of Business 59(2) 197-216. 

Rosenbaum, P.R., D.B. Rubin.  1983.  The central role of the propensity score in observational studies for 

causal effects.  Biometrika 70(1) 41-55. 

Sadka, R.  2010.  Liquidity Risk and the Cross-Section of Hedge-Fund Returns.  Journal of Financial 

Economics 98(1) 54-71. 

Samuelson, P.  1969.  Lifetime Portfolio Selection by Dynamic Stochastic Programming.  Review of 

Economics and Statistics 51(3) 239-246. 

Scharfstein, D.S., J.C. Stein.  2000.  The Dark Side of Internal Capital Markets:  Divisional Rent-Seeking 

and Inefficient Investment.  Journal of Finance 55 (6): 2537-2564. 

Schoar, A.  2002.  Effects of Corporate Diversification on Productivity.  Journal of Finance 57(6) 2379-

2403. 

Sharpe, W.  1964.  Capital Asset Prices: A theory of Market Equilibrium Under Conditions of Risk. 

Journal of Finance 19(3) 425-442. 

Siggelkow, N.  2003.  Why Focus?  A Study of Intra-Industry Focus Effects.  The Journal of Industrial 

Economics 51(2) 121-150. 

Silverman, B.  1999.  Technological Resources and the Direction of Corporate Diversification:  Toward 

an Integration of the Resource-Based View and Transaction Cost Economics.  Management Science 

45(8) 1109-1124. 

Teece, D.J. 1980.  Economies of Scope and the Scope of the Enterprise. Journal of Economic Behavior 

and Organization 1(3) 223-247 

Teoh, S.H., I. Welch, T.J. Wong.  1998.  Earnings Management and the Long-run Market Performance of 

Initial Public Offerings.  Journal of Finance 53(6) 1935-1974. 

Villalonga, B.  2004.  Diversification Discount or Premium? New Evidence from the Business 

Information Tracking Series.  Journal of Finance 59(2) 479-506.  

Wernerfelt, B.  1998.  Umbrella Branding as a Signal of New Product Quality:  An Example of Signaling 

by Posting a Bond.  RAND Journal of Economics 19(3) 458-466.  

Williamson, O.  1999.  Strategy Research:  Governance and Competence Perspectives.  Strategic 

Management Journal 20(12) 1087-1108. 



23 
 

Figure 1:  Skill, luck and performance 
 

 
 
Figure 2: Time path of raw returns for diversifiers 

 

 
This figure shows average raw returns (vertical axis) for the first fund from all diversified hedge funds in our sample 
versus event-time on the horizontal axis.  Event time is measured in months around the event (e.g., diversification) 
at time 0.  The chart shows the time path of returns from thirty-six months before diversification to thirty-five 
months after diversification for 33,421 fund-months from 676 diversifying firms.  
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Figure 3:  Propensity score predicting diversification before and after matching 

 

Propensity scores before matching  Propensity scores after matching 

 
 

Table 1:  Key descriptive statistics for the main (matched) sample 

 

N=37,657 fund-months from 1,353 firms     
 Mean Std dev Min Max 

     
Raw returns (%) 0.87 5.19 -70 116 

8-factor monthly excess returns (%) 0.37 3.77 -11.18 13.35 

Standard deviation of excess returns (%) 3.57 2.78 0.39 13.89 

8-factor information ratio 0.17 1.00 -2.48 3.01 

Diversified (fraction) 0.53 n/a 0 1 

Fund assets under management ($M) 100 238 0.2 1,890 

Firm assets under management ($M) 147 372 0.9 8,310 

Missing AUM (fraction) 0.11 n/a 0 1 

Age (months) 47 34 2 345 

Year: 1994 0.01 n/a 0 1 

Year: 1995 0.03 n/a 0 1 

Year: 1996 0.06 n/a 0 1 

Year: 1997 0.08 n/a 0 1 

Year: 1998 0.08 n/a 0 1 

Year: 1999 0.09 n/a 0 1 

Year: 2000 0.09 n/a 0 1 

Year: 2001 0.08 n/a 0 1 

Year: 2002 0.08 n/a 0 1 

Year: 2003 0.09 n/a 0 1 

Year: 2004 0.10 n/a 0 1 

Year: 2005 0.12 n/a 0 1 

Year: 2006 0.09 n/a 0 1 

Headquarters in USA 0.67 n/a 0 1 
The main (matched) sample includes the fund-months from the diversification date (or match date) until thirty-five 
months after diversification (or match date) for 676 diversifiers and 677 matched focused firms (there is one tie).
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Table 2:  Predicting diversification and matching statistics 

Dependent variable = 1 if a firm launches a second fund at time (month) t and zero otherwise 
  Predicting  Comparison of means in matched an unmatched samples 

 diversification  Unmatched sampe1 Baseline match2 Alternative match3 

          
 (1) (2)  means diff. means diff. means diff. 

 Marginal 
effects % 

Marginal 
effects % 

 Foc-
used 

Diver-
sified 

in 
means4 

Foc-
used 

Diver-
sified 

in 
means4 

Foc-
used 

Diver-
sified 

in 
means4 

             
Avg. 8-factor CAR  0.079* 0.055*  0.53 0.77 -4.13* 0.58 0.73 -1.86

+ 0.71 0.74 -0.32 

  (0.019) (0.017)  (0.01) (0.06)  (0.06) (0.06)  (0.06) (0.05)  

             
Avg. strategy  -0.033  0.50 0.48 1.47 0.46 0.48 -0.63 0.47 0.48 -0.54 
  8-factor CAR  (0.084)  (0.00) (0.02)  (0.02) (0.02)  (0.02) (0.02)  
             
Size controls5 N Y*  Y Y * Y Y  Y Y  
Age control6 N Y*  Y Y * Y Y * Y Y * 
Strategy fixed effects7 N Y*  Y Y * Y Y  Y Y  
Strategy size control8 N Y   Y Y * Y Y * Y Y * 
Year fixed effects9 N Y+  Y Y * Y Y * Y Y  
Region fixed effects10 N Y  Y Y + 

Y Y  Y Y  
Interactions11 N N  N N  N N  Y Y  
             
Unique funds 1,876 1,876  1,186 690  677 676  649 647  
N 85,428 85,428  84,738 690  677 676  649 647  
F-test on the joint difference in means  >99*   1.23   1.12 

*Significant at the 5% level.  + Significant at the 10% level.  Standard errors are in parentheses.   
1The unmatched sample is the full survivor-bias free sample of first funds from firms in TASS and HFR 1994-2006  
2The baseline match sample is derived from 1:1 nearest neighbor matching on the propensity to diversity using model (2) (there is one tie). 
3The alternative match sample modifies model (2) by including interaction effects on CAR with year and size (there are two ties). 
4T-tests are reported on individual differences in means.  F-tests are reported on tests of the joint differences in means. 
5Size controls include own-fund size decile dummies (by AUM) and a dummy for missing size, (except in the alternative match where size enters continuously). 
6Log age, where age is measured as months from founding date 
7Strategy fixe effects include dummy variables for the ten largest self-identified investment strategy types (by number of funds) 
8Log AUM for all firms in a strategy 
9Year fixed effects include dummy variables for each year 1994-2006  
10Region fixed effects include dummies for firms domiciled in the: USA, UK, continental Europe, Asia, and all other locations  
11Interactions include:  Avg. 8-factor CAR interacted with: log AUM, (log AUM)2, missing AUM, and the year fixed effects. 
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Table 3:  Diversification and performance 

 

   
 Within-fund changes in 

performance 
Matched sample  

performance  

         
Dependent variable 8-factor 

excess 
returns 

 8-factor 
information 

ratio 

 8-factor 
excess 
returns 

 8-factor 
information 

ratio 

 

         
Event window -36 to +35  -36 to +35  0 to +35  0 to +35  
(in months)         
 (1)  (2)  (3)  (4)  
         

DIVERSIFIED -0.136
+  -0.037*  0.177*  0.061*  

   (0.071)  (0.018)  (0.050)  (0.019)  

         
Log age -0.102+  -0.044*  -0.097*  -0.065*  
 (0.056)  (0.016)  (0.039)  (0.016)  
         
Log AUM  0.068  0.001  -0.113*  -0.023  
  by strategy (0.122)  (0.029)  (0.047)  (0.028)  
         
Constant Y  Y  Y  Y  
         
11 size fixed effects Y  Y  Y  Y  
         
13 year fixed effects Y  Y  Y  Y  
         
36 event time fixed effects N  N  Y  Y  
         
5 region fixed effects N  N  Y  Y  
         
11 strategy fixed effects N  N  Y  Y  
         
676 fund fixed effects Y  Y  N  N  
         
Firms 676  676  1,353  1,353  
N 33,421  33,421  37,657  37,657  
Adjusted R2 0.04  0.07  0.01  0.02  
         

* Significant at the 5% level, + Significant at the 10% level.  Standard errors are clustered by fund 
The “within-fund changes in performance” sample includes the fund-months from thirty-six months before 
diversification until thirty-five months after diversification for 676 diversifiers. 
The matched sample includes the fund-months from the diversification date (or match date) until thirty-six months 
after diversification (or match date) for 676 diversifiers and 677 matched focused firms (there is one tie). 
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Table 4:  Robustness checks 

 

   
  Dependent variables 

      
Regression description n Excess 

returns 
 Information 

ratio 
      

Alternative performance measures 
      
4-factor performance 37,657 0.144 * 0.054 * 
  (0.049)  (0.018)  

      
7-factor performance 37,657 0.177  * 0.059 * 
    (0.049)  (0.018)  
      

Firm-level performance 
      
Equal weighted 8-factor  37,657 0.184 * 0.065 * 
 firm performance  (0.049)  (0.018)  
      
Value weighted 8-factor 37,657 0.183 * 0.065 * 
 firm performance  (0.051)  (0.019)  
      

Alternative matching regimes 
      
Weighted 60-month CAR 37,501 0.123 * 0.052 * 
 8-factor performance  (0.053)  (0.018)  
      
Alternative matching regime 35,784 0.102 * 0.064 * 
 8-factor performance  (0.048)  (0.017)  
      

* Significant at the 5% level.   
Standard errors clustered by fund in the alternative performance measures and alternative matching regimes 
robustness checks, and by firm in the firm-level performance regressions. 
Coefficient values for DIVERSIFIED are reported.  All regressions contain the same controls as in Table 3.  Firm-
level controls are aggregated to the firm level. 
The “first stage” of the alternative matching regime model includes CAR interacted with the full set of year 
dummies, size (log AUM), missing AUM, and size2 (as shown in Table 2) 
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Appendix 1:  Proofs of results 

Proof of Lemma 1. Assume an arbitrary posterior estimate conditional on play of the game to that point 

that the investor holds about managers with a particular history. Given these beliefs, as in (3), a manager 

will diversify iff 

JcrwrwErwrwrwErw −+++≤+ ))1,())1,(()1,()1,())0,(()0,( 223213122112213112 δδ . 

Rearranging, we have the condition that

 ))0,(()0,())1,())1,(()1,()1,()( 2131122232131221121 rwErwrwrwErwrwrc j δδ −−+++≤ . 

Since ))0,(())1,(( 213213 rwErwE −  is lower for a low type than a high type, it must be the case that 

)()( 11 rcrc LH ≥ . Since )(~ chc j  is the same for low and high types and is atomless, and 

0),( =jjcCorr θ , this implies that 

))(Pr(),|1Pr())(Pr(),|1Pr( 1111 rccrdrccrd LjLjHjHj >==≥>== θθ  (A1) 

The remainder of the result follows trivially from (A1). ■ 

Proof of Lemma 2. Note that (3) and Lemma 1 are a result of the manager’s decision problem, and 

therefore are met in any non-pooling equilibrium. Note further, from (3) it is clear that if a manager with 

cost )(~ chc j  
chooses to diversify, then all managers jk ≠ of the same skill type θ , initial 

performance  1r  
and kj cc <  also diversify. Because the distribution of c is atomless, we can then define 

the decision for all managers as defined by the thresholds in c at which diversification occurs. 

 To specify an equilibrium, we have to define beliefs of the investor ),|Pr(),( 11 rdrd Hk θθφ == .  

For convenience, we suppress parameters and refer to beliefs using the following simplified notation 

where the meaning is clear: φφ =),( 1rd , 11 ),1( φφ =r , and 01 ),0( φφ =r . Because the payoffs in (3) do 

not depend on 1r , but rather on investor beliefs φ , we can define the best response functions of the 

managers given arbitrary beliefs of the investor as ),( 01 φφθc  Given those beliefs and )(cH the share of 

types θ  that diversify is )),(( 01 φφθcH .  

 Next, note from Lemma 1, that if 01 φφ =   then  ),(),( 0101 φφφφ LH cc ≥ , and strictly so if 

0),( 01 >φφHc . This implies 

).|)0,(()|)0,(()|)1,()1,(()|)1,()1,(( 112112122112122112 LHLH rwErwErwrwErwrwE θθθθ −>+−+  

 In any separating equilibrium, beliefs of the investor in the second period are governed by Bayes’ 

rule and the best responses of managers: 
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where )|(Pr)( 1robrq Hθ= , or the share of managers with return history � who are high types. 

The above beliefs form a mapping over beliefs of the investor that are consistent with the best 

responses of managers. All interior equilibria are fixed points of this mapping. However, to show 

existence of a diversification equilibrium, we define the following modified mapping:  

If ),(),( 0101 φφφφ LH cc ≥ : 

))(1))(,(()()),((
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=

φφφφ

φφ
φ  
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−
=

φφφφ
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φ  

Otherwise: 

 )(1 rq=φ  and )(0 rq=φ  

This is clearly a continuous mapping. To show existence of diversification we need to show that that same 

mapping is defined over the set 
2]1,0[  where 01 φφ ≥  (i.e. a convex and closed, compact set). If 01 φφ ≥  

and ),(),( 0101 φφφφ LH cc ≥ it maps to another pair where 01 φφ ≥ . If 01 φφ ≥  and 

),(),( 0101 φφφφ LH cc <  it maps to 01 φφ = . By Brouwer’s fixed point theorem we have a fixed point in 

the set 
2]1,0[  where 01 φφ ≥ . By Lemma 1, 01 φφ =  is not an equilibrium so it is not a fixed point, so it 

must be that  01 φφ ≥ . So this must also be a fixed point of the unmodified problem above.  

It is also a partial pooling equilibrium such that some, but not all, of both high and low managers 

diversify for all 1r . Namely, note that  11 =φ  is not an equilibrium, because then there would be no 

updating so the expected utilities from diversifying for high types and low types are the same, but those 

from not diversifying are weakly higher for high types so we would have, ),(),( 0101 φφφφ LH cc < ; this 

implies that 11 <φ , so some low type managers diversify. Since  ),(),( 0101 φφφφ LH cc ≥  then some high 

type managers also diversify. ■ 

Lemma A1: Define  c  such that a high type manager with cost type c  is indifferent between 

diversifying and staying focused if the investor has beliefs  0)(),()( 01 == rrqr φφ , then for all 
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rr >1 , there exists an equilibrium where all high type managers diversify and some low type managers 

diversify. Further ),( 01 φφLc  is weakly increasing in 1r ; strictly increasing over  ]ˆ,[ rr , where r̂  is 

defined such that a low type manager with cost type c  is indifferent between diversifying and staying 

focused if the investor has beliefs 0)(),()( 01 == rrqr φφ ; and ),( 01 φφLc is constant above r̂ . 

Proof of Lemma A1: Given c  and rr >1 , diversification is a best response for all high type managers. 

This implies that 0),(
))(1))(0,(()(

)(
01

111

1
1 =≥

−+
= φ

φ
φ rq

rqcHrq

rq

L

. Since the return from staying 

focused is zero for low types, )0,,1,|()0,( 11 φθπφ == dEc LL , where we denote the manager’s payoff as 

π .  Note that 1φ  is decreasing in ),( 01 φφLc  within the range ]1),([ 1rq , and  )0,( 1φLc  is increasing in 1φ  

It follows that a unique equilibrium exists. By construction, for �̂, ccL =),( 01 φφ . All that remains is to 

show that ),( 01 φφLc  is increasing over ]ˆ,[ rr . 

The equilibrium defines thresholds as functions of )( 1rq : 

0)0,,1,|( *
1 =−= LL cdE φθπ  

0
))(1)(()(

)( *

1

1

*

1

1 =−
−+

φ
rqcHrq

rq

L

 

 

where the asterisks indicate equilibrium quantities. From the implicit function theorem, we have: 
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Lemma A2. There exists an equilibrium with diversification such that the derivative 

},{
),(

1

11 LHk
r

ck ∈
∂

∂ φφ
  is weakly positive everywhere and strictly positive over some range. 

Proof of Lemma A2: This proof is by construction. For rr >1  take the equilibrium defined in Lemma 

A1.  For ][1 rrr ∈∈  take the equilibrium shown in Lemma 2, where r  is chosen such that the thresholds 

are non-decreasing. Finally, for rr <1 , take the no diversification equilibrium, i.e. where beliefs are such 

that )(,0 121 rq== φφ . Note that since the equilibrium identified in Lemma A1 has the highest 

thresholds for an equilibrium for the given 1r , by continuity, there must exist rr < .■ 

Proof of Result 1: Part (i). Since the cutpoints }{ kc are weakly increasing in 1r , and that jc  is 

independent of 1r , this implies that conditional on kθ , the probability of diversification is increasing in 

.1r  Further, by Lemma 1, we have that ),(),( 2121 φφφφ LH cc ≥ . Using the fact that we have 

)|Pr()|Pr( 11 LiHi rrrr θθ >>>
, we have the result. Part (ii). This follows directly from the fact that 

the cutpoints 
}{ kc

 are weakly increasing in 1r  Part (iii) follows directly from Lemma 1 in that 

),(),( 2121 φφφφ LH cc ≥  
and strictly so for returns where we have non-diversifiers.
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